PDF(1688 KB)
Key Issues and Prospects for Low-Carbon Operation and Scheduling of the New Power System from an Electricity-Carbon Coupling Perspective
ZHAO Junhua, BAI Yan, WANG Zhidong
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (7) : 133-149.
PDF(1688 KB)
PDF(1688 KB)
Key Issues and Prospects for Low-Carbon Operation and Scheduling of the New Power System from an Electricity-Carbon Coupling Perspective
[Objective] The development of a new power system has paved the way for promoting a low-carbon transition in power grids in China. However, the simultaneous pursuit of safety, economic efficiency, and low-carbon emissions poses an “energy trilemma” in system operations and dispatch. As electricity and carbon markets mature and integrate, traditional dispatch methods are being reformed, making the establishment of a market mechanism tailored to new power systems pivotal for addressing low-carbon dispatch challenges.[Methods] From the perspective of electro-carbon coupling, this study clarifies the interactive impact between electricity and carbon markets. It investigates low-carbon operational strategies and market mechanism designs within dual electricity-carbon markets for the new power system. Specifically, a comprehensive survey and systematic review are conducted in five areas: carbon emission awareness, market participant behavior modeling, joint simulation of electricity and carbon markets, low-carbon dispatch strategies, and market mechanisms for new power systems, thereby dissecting the five key technologies for low-carbon dispatch along with their research limitations.[Results] The findings revealed that the existing research had deficiencies in the aforementioned dimensions. In particular, during the integration of the electricity and carbon markets, unclear coupling mechanisms and the absence of an effective quota allocation mechanism rendered the market coordination process static and overly simplified. Moreover, market simulation methods faced a contradiction between insufficient interpretability and overly stringent assumptions, and the integration of renewable energy units (characterized by near-zero short-term marginal costs) undermined traditional pricing models and complicated multi-period cost allocation.[Conclusions] To address these challenges, this study proposes a research framework for low-carbon dispatch in the new power system. The framework is geared towards exploring renewable-energy-dominated low-carbon operational pathways based on enhanced carbon sensing and improved market modeling and simulation methods, thus offering fresh perspectives and insights for the low-carbon transformation of power systems.
energy structure / energy management / new power system / low-carbon transition / low-carbon operation and scheduling
| [1] |
周太东, 王泺, 施训鹏. 能源清洁转型与全球发展路径[J]. 全球能源互联网, 2024, 7(6): 627-628.
|
| [2] |
习近平在第七十五届联合国大会一般性辩论上的讲话[EB/OL].(2020-09-22)[2024-06-10]. https://baijiahao.baidu.com/s?id=1678547030736655301&wfr=spider&for=pc.
Statement by Xi Jinping at the general debate of the 75th session of the United Nations General Assembly[EB/OL].(2020-09-22)[2024-06-10]. https://baijiahao.baidu.com/s?id=1678547030736655301&wfr=spider&for=pc.
|
| [3] |
新华社. 习近平主持召开中央财经委员会第九次会议[J]. 预算管理与会计, 2021(4): 4-5.
|
| [4] |
国家能源局综合司关于公开征求《新型电力系统发展蓝皮书(征求意见稿)》意见的通知[EB/OL].(2023-01-04)[2024-06-10]. http://www.nea.gov.cn/2023-01/06/c_1310688702.htm.
Notice from the Comprehensive Department of the National Energy Administration on publicly soliciting opinions on the draft of the “blue book on the development of new power system” [EB/OL]. (2023-01-04)[2024-06-10]. http://www.nea.gov.cn/2023-01/06/c_1310688702.htm.
|
| [5] |
|
| [6] |
高志远, 陈亚军, 孙芊, 等. 电力计划和市场双轨制运行中部分协调问题探讨[J]. 供用电, 2023, 40(4): 83-91.
|
| [7] |
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
|
| [8] |
2022年二季度全国新能源电力消纳评估分析[EB/OL].(2022-09-07)[2024-06-10]. https://news.bjx.com.cn/html/20220907/1253622.shtml.
National new energy power consumption assessment and analysis for the second quarter of 2022[EB/OL]. (2022-09-07)[2024-06-10]. https://news.bjx.com.cn/html/20220907/1253622.shtml.
|
| [9] |
周业荣, 毛玉鑫, 胡杨, 等. 2022年夏季极端天气对四川电力影响与启示[J]. 水力发电学报, 2023, 42(6): 23-29.
|
| [10] |
程松, 周鑫, 任景, 等. 面向新型能源体系的电力市场机制发展趋势研究[J]. 广东电力, 2023, 36(11): 29-40.
|
| [11] |
李祥光, 谭青博, 李帆琪, 等. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125.
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
曾金灿, 王成围, 杨晨, 等. 基于广义节点碳流理论的区域电网用电碳排放计算方法[J]. 广东电力, 2023, 36(11): 20-28.
|
| [23] |
翟绘景, 高梓淳, 李文静, 等. 计及网损和相关性的新型电力系统概率碳排放流计算[J]. 供用电, 2024, 41(7): 84-91.
|
| [24] |
程祥, 李林芝, 吴浩, 等. 非侵入式负荷监测与分解研究综述[J]. 电网技术, 2016, 40(10): 3108-3117.
|
| [25] |
李鹏, 吴文昊, 郭伟. 连续监测方法在全国碳市场应用的挑战与对策[J]. 环境经济研究, 2021, 6(1): 77-92.
|
| [26] |
|
| [27] |
李光肖, 杨依路, 刘宗杰, 等. 基于扩展系统动力学模型的电力碳排放量预测方法[J]. 山东电力技术, 2024, 51(11): 61-73.
|
| [28] |
张宇娇, 李宏松, 郭垚, 等. 电缆支架全生命周期碳排放计算与分析[J]. 高压电器, 2024, 60(4): 40-48.
|
| [29] |
|
| [30] |
王微, 林剑艺, 崔胜辉, 等. 碳足迹分析方法研究综述[J]. 环境科学与技术, 2010, 33(7): 71-78.
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
冯登国, 张敏, 李昊. 大数据安全与隐私保护[J]. 计算机学报, 2014, 37(1): 246-258.
|
| [35] |
The industrial Internet of Things (IoT) is a trend of factory development and a basic condition of intelligent factory. It is very important to ensure the security of data transmission in industrial IoT. Applying a new chaotic secure communication scheme to address the security problem of data transmission is the main contribution of this paper. The scheme is proposed and studied based on the synchronization of different-structure fractional-order chaotic systems with different order. The Lyapunov stability theory is used to prove the synchronization between the fractional-order drive system and the response system. The encryption and decryption process of the main data signals is implemented by using the n-shift encryption principle. We calculate and analyze the key space of the scheme. Numerical simulations are introduced to show the effectiveness of theoretical approach we proposed.
|
| [36] |
张丽丽, 张玉清. 基于分布式计算的RC4加密算法的暴力破解[J]. 计算机工程与科学, 2008, 30(7): 15-17, 20.
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
林伯强. 现代能源体系下的碳市场与电力市场协调发展[J]. 人民论坛·学术前沿, 2022(13): 56-65.
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
中华人民共和国生态环境部. 碳排放权交易管理办法(第19号令) [EB/OL].(2021-02-01)[2024-06-10]. http://www.gov.cn/gongbao/content/2021/content_5591410.htm.
Ministry of Ecology and Environment of the People's Republic of China. Regulation on the management of carbon emission trading rights (Order No.19)[EB/OL]. (2021-02-01)[2024-06-10]. http://www.gov.cn/gongbao/content/2021/content_5591410.htm.
|
| [48] |
|
| [49] |
|
| [50] |
宣晓伟, 张浩. 碳排放权配额分配的国际经验及启示[J]. 中国人口·资源与环境, 2013, 23(12): 10-15.
|
| [51] |
杨军, 赵永斌, 丛建辉. 全国统一碳市场碳配额的总量设定与分配: 基于碳交易三大特性的再审视[J]. 天津社会科学, 2017(5): 110-114.
|
| [52] |
刘国中, 文福拴, 薛禹胜. 温室气体排放权交易对发电公司最优报价策略的影响[J]. 电力系统自动化, 2009, 33(19): 15-20.
|
| [53] |
|
| [54] |
|
| [55] |
柴雪, 苏子航, 李建男, 等. 面向现货市场仿真的发电商有限理性智能体报价模型[J]. 电网技术, 2022, 46(12): 4800-4808.
|
| [56] |
宋怡, 林晨韵, 梁高琪, 等. 基于电力现货市场仿真的海上风电接入对广东省电力行业碳减排影响评估[J]. 全球能源互联网, 2020, 3(4): 363-373.
|
| [57] |
林楚. 建设我国新型电力系统将分“三步走”[N]. 机电商报,2023-01-16(A06)
|
| [58] |
|
| [59] |
卢治霖, 刘明波, 尚楠, 等. 考虑碳排放权交易市场影响的日前电力市场两阶段出清模型[J]. 电力系统自动化, 2022, 46(10): 159-170.
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
王一, 吴洁璇, 王浩浩, 等. 碳排放权市场与中长期电力市场交互作用影响分析[J]. 电力系统及其自动化学报, 2020, 32(10): 44-54.
|
| [64] |
赵长红, 张明明, 吴建军, 等. 碳市场和电力市场耦合研究[J]. 中国环境管理, 2019, 11(4): 105-112.
|
| [65] |
朱丽洁. 中国碳交易价格与电力价格相关性研究[J]. 中国林业经济, 2021(2): 52-55.
|
| [66] |
曹一家. 并行遗传算法在电力系统经济调度中的应用: 迁移策略对算法性能的影响[J]. 电力系统自动化, 2002, 26(13): 20-24.
|
| [67] |
|
| [68] |
刘晓雄, 蔺红. 基于模型预测控制的源荷储低碳经济调度[J]. 电测与仪表, 2024, 61(7): 153-160.
|
| [69] |
陈海焱, 陈金富, 段献忠. 含风电场电力系统经济调度的模糊建模及优化算法[J]. 电力系统自动化, 2006, 30(2): 22-26.
|
| [70] |
|
| [71] |
|
| [72] |
刘亚. 面向惯量和调频备用需求的电力系统优化调度方法[D]. 上海: 上海电力大学, 2021.
|
| [73] |
|
| [74] |
陈启鑫, 康重庆, 夏清, 等. 低碳电力调度方式及其决策模型[J]. 电力系统自动化, 2010, 34(12): 18-23.
|
| [75] |
|
| [76] |
|
| [77] |
王贵斌, 赵俊华, 文福拴, 等. 配电系统中电动汽车与可再生能源的随机协同调度[J]. 电力系统自动化, 2012, 36(19): 22-29.
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
李晓刚, 言茂松, 谢贤亚. 3种定价方法对发电厂商报价策略的诱导机理[J]. 电力系统自动化, 2003, 27(5): 20-25.
|
| [90] |
唐成鹏, 张粒子, 刘方, 等. 基于多智能体强化学习的电力现货市场定价机制研究(一): 不同定价机制下发电商报价双层优化模型[J]. 中国电机工程学报, 2021, 41(2): 536-553.
|
| [91] |
|
| [92] |
|
| [93] |
孟繁林, 钟海旺, 夏清. 基于非凸报价的高比例新能源现货市场机制[J]. 电网技术, 2023, 47(1): 120-128.
|
| [94] |
胡荷娟, 孙晓燕, 曾博, 等. 考虑源-荷不确定性的矿山综合能源系统多时间尺度区间优化调度[J]. 控制与决策, 2024, 39(3): 827-835.
|
| [95] |
陈图南, 李文萱, 李云, 等. “双碳” 背景下碳-绿证-电力市场耦合机制综述[J]. 广东电力, 2024, 37(8): 14-25.
|
| [96] |
钟立华, 潘峰, 杨雨瑶, 等. 碳计量视角下绿色电力交易对碳市场主体行为决策的影响机制研究[J]. 电测与仪表, 2025, 62(1): 68-79.
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
/
| 〈 |
|
〉 |