Single-Ended Protection Scheme for Offshore Flexible Low-Frequency Transmission Lines Based on High-Frequency Transient Quantities

LI Jingzheng, DU Xiaotong, LI Meng

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (8) : 105-115.

PDF(1923 KB)
PDF(1923 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (8) : 105-115. DOI: 10.12204/j.issn.1000-7229.2025.08.010
Dispatch & Operation

Single-Ended Protection Scheme for Offshore Flexible Low-Frequency Transmission Lines Based on High-Frequency Transient Quantities

Author information +
History +

Abstract

[Objective] To enhance the speed and reliability of protection for marine flexible low-frequency AC transmission lines and ensure the safe operation of offshore wind power flexible low-frequency AC transmission systems,high-frequency transient single-ended fast protection considering the boundary effects of busbars and modular multilevel matrix converters(M3Cs)is proposed. [Methods] By analyzing the equivalent models of busbars and M3Cs at both ends of the line,the boundaries at both ends were noted to have a significant attenuation effect on the high-frequency components of voltage traveling waves,and a clear high-frequency range was determined. The differences in the forward and backward wave high-frequency components under various time conditions for internal and external faults were revealed. Based on this,a successive mode decomposition algorithm was used to extract high-frequency transient components,characterizing the distinction between the internal and external faults through the ratio of forward to backward wave high-frequency energies. [Results] The PSCAD/EMTDC simulation results showed that the successive mode decomposition algorithm effectively extracted high-frequency information from noisy data. The proposed single-ended protection scheme accurately and reliably identified the internal and external faults within 2 ms,tolerating up to 10 dB noise and 500 Ω transition resistance,demonstrating superior resistance to transition resistances and noise compared to traditional single-ended transient-based protection methods. [Conclusions] The boundaries of marine flexible low-frequency AC transmission lines exhibit a significant attenuation effect on signals with frequencies greater than 5 kHz. For internal versus external faults,the energy values of the fault backward and forward wave high-frequency components are notably different,leading to a significantly faster action speed of the constructed protection method compared to existing differential protection schemes. This method does not require communication conditions and can withstand the impact of the marine environment,thus showing potential for engineering applications.

Key words

low-frequency power transmission / high-frequency quantities / successive variational mode decomposition / line protection / single-end quantities / wind power

Cite this article

Download Citations
LI Jingzheng , DU Xiaotong , LI Meng. Single-Ended Protection Scheme for Offshore Flexible Low-Frequency Transmission Lines Based on High-Frequency Transient Quantities[J]. Electric Power Construction. 2025, 46(8): 105-115 https://doi.org/10.12204/j.issn.1000-7229.2025.08.010

References

[1]
马壮, 淡淑恒. 考虑故障风险与不确定性的海上风电主变压器检修策略[J]. 电力科学与技术学报, 2024, 39(2): 214-222.
MA Zhuang, DAN Shuheng. Maintenance strategy of offshore wind power main transformer considering fault risk and uncertainty[J]. Journal of Electric Power Science and Technology, 2024, 39(2): 214-222.
[2]
李洪伟, 徐学帅, 熊晓川, 等. 面向分频传输系统的Y-MMC自适应反步控制策略[J]. 智慧电力, 2024, 52(12): 35-42.
LI Hongwei, XU Xueshuai, XIONG Xiaochuan, et al. Adaptive backstepping control strategy for Y-type modular multilevel converter facing fractional frequency transmission systems[J]. Smart Power, 2024, 52(12): 35-42.
[3]
赵国亮, 陈维江, 邓占锋, 等. 柔性低频交流输电关键技术及应用[J]. 电力系统自动化, 2022, 46(15): 1-10.
ZHAO Guoliang, CHEN Weijiang, DENG Zhanfeng, et al. Key technologies and application of flexible low-frequency AC transmission[J]. Automation of Electric Power Systems, 2022, 46(15): 1-10.
[4]
徐政. 海上风电送出主要方案及其关键技术问题[J]. 电力系统自动化, 2022, 46(21): 1-10.
XU Zheng. Main schemes and key technical problems for grid integration of offshore wind farm[J]. Automation of Electric Power Systems, 2022, 46(21): 1-10.
[5]
黄阳, 陶永政, 孔志达, 等. 海上风电柔性低频输电系统的技术经济分析[J]. 电网技术, 2024, 48(12): 4865-4875.
HUANG Yang, TAO Yongzheng, KONG Zhida, et al. Techno-economic analysis of flexible low-frequency transmission system for offshore wind farm integration[J]. Power System Technology, 2024, 48(12): 4865-4875.
[6]
黄冬梅, 牟宗凯, 时帅, 等. 考虑复杂海洋状况下的深远海风电场并网系统可靠性评估[J]. 电力科学与技术学报, 2024, 39(6): 174-183.
HUANG Dongmei, MU Zongkai, SHI Shuai, et al. Reliability assessment of grid-connected systems in deep-sea offshore wind farms under complex oceanic conditions[J]. Journal of Electric Power Science and Technology, 2024, 39(6): 174-183.
[7]
潘武略, 钱政旭, 孙志攀, 等. 基于采样值差动原理的低频输电线路差动保护研究[J]. 浙江电力, 2023, 42(2): 35-42.
PAN Wulue, QIAN Zhengxu, SUN Zhipan, et al. Research on differential protection of low frequency transmission lines based on differential principle of sampling values[J]. Zhejiang Electric Power, 2023, 42(2): 35-42.
[8]
孙均磊, 贾科, 李再男, 等. 基于故障分量时频突变特征的海上风电直流升压送出线路纵联保护[J]. 电力系统保护与控制, 2024, 52(18): 1-11.
SUN Junlei, JIA Ke, LI Zainan, et al. Pilot protection for offshore wind power DC transmission lines based on the time-frequency mutation characteristics of fault components[J]. Power System Protection and Control, 2024, 52(18): 1-11.
[9]
葛畅, 阎洁, 刘永前, 等. 海上风电场运行控制维护关键技术综述[J]. 中国电机工程学报, 2022, 42(12): 4278-4292.
GE Chang, YAN Jie, LIU Yongqian, et al. Review of key technologies for operation control and maintenance of offshore wind farm[J]. Proceedings of the CSEE, 2022, 42(12): 4278-4292.
[10]
吴小丹, 朱海勇, 董云龙, 等. 面向柔性低频输电的模块化多电平矩阵变换器分频分层控制[J]. 电力系统自动化, 2021, 45(18): 131-140.
WU Xiaodan, ZHU Haiyong, DONG Yunlong, et al. Frequency-division and hierarchical control of modular multilevel matrix converter for flexible low-frequency transmission[J]. Automation of Electric Power Systems, 2021, 45(18): 131-140.
[11]
赵平, 贾浩森, 高亨孝, 等. 应对岸上故障的海上风电多端柔直系统协调控制策略[J]. 中国电力, 2024, 57(8): 85-95.
ZHAO Ping, JIA Haosen, GAO Hengxiao, et al. Coordinated control strategy of modular multi-level converter-based multiterminal direct current system for onshore wind power faults[J]. Electric Power, 2024, 57(8): 85-95.
[12]
贾科, 董学正, 李俊涛, 等. 一种适用于海上风电经MMC-MTDC并网的电网侧故障穿越方法[J]. 电力系统保护与控制, 2023, 51(21): 76-85.
JIA Ke, DONG Xuezheng, LI Juntao, et al. A grid-side fault ride-through method suitable for offshore wind farms connected with MMC-MTDC[J]. Power System Protection and Control, 2023, 51(21): 76-85.
[13]
何佳伟, 魏杰, 戴魏, 等. 模块化多电平矩阵换流器接入下的工频故障特性分析[J]. 电力系统自动化, 2024, 48(21): 49-60.
HE Jiawei, WEI Jie, DAI Wei, et al. Analysis of power frequency fault characteristics under integration of modular multilevel matrix converter[J]. Automation of Electric Power Systems, 2024, 48(21): 49-60.
[14]
魏杰, 何佳伟, 李斌, 等. 模块化多电平矩阵换流器的等值阻抗模型解析分析[J]. 电力自动化设备, 2025, 45(1):147-155.
WEI Jie, HE Jiawei, LI Bin, et al. Analytical analysis of equivalent impedance model of modular multilevel matrix converter[J]. Electric Power Automation Equipment, 2025, 45(1):147-155.
[15]
赵勃扬, 王锡凡, 宁联辉, 等. 分频海上风电系统的不对称故障穿越控制[J]. 中国电机工程学报, 2023, 43(12): 4589-4600.
ZHAO Boyang, WANG Xifan, NING Lianhui, et al. Ride-through control of fractional frequency offshore wind power system during unsymmetrical grid faults[J]. Proceedings of the CSEE, 2023, 43(12): 4589-4600.
[16]
CATALÁN P, WANG Y B, ARZA J, et al. Advanced fault ride-through operation strategy based on model predictive control for high power wind turbine[J]. IEEE Transactions on Sustainable Energy, 2024, 15(1): 513-526.
[17]
瞿晟珉, 应飞祥, 秦少茜, 等. “双碳” 背景下海上风电维护策略研究现状与展望[J]. 智慧电力, 2023, 51(10): 23-30.
QU Chengmin, YING Feixiang, QIN Shaoxi, et al. Research status and prospects of offshore wind power maintenance strategy under background of carbon peak and carbon neutrality[J]. Smart Power, 2023, 51(10): 23-30.
[18]
何维轩, 樊征臻, 霍姚彤, 等. 基于交叉熵的海上风电经柔性低频送出系统海缆纵联保护[J]. 中国电力, 2023, 56(11): 38-48.
HE Weixuan, FAN Zhengzhen, HUO Yaotong, et al. Pilot protection scheme of submarine cable in flexible low-frequency transmission system based on cross entropy algorithm[J]. Electric Power, 2023, 56(11): 38-48.
[19]
薛明军, 陈福锋, 杨林刚, 等. 海上风电交流送出线路继电保护优化设计[J]. 电力系统保护与控制, 2023, 51(20): 150-159.
XUE Mingjun, CHEN Fufeng, YANG Lingang, et al. Optimized design of relay protection for an offshore wind power outgoing transmission line[J]. Power System Protection and Control, 2023, 51(20): 150-159.
[20]
蒋嘉桁, 张晨浩, 宋国兵, 等. 电流差动保护在海上风电低频送出线路中的适应性分析[J]. 电力系统自动化, 2024, 48(1): 131-139.
JIANG Jiaheng, ZHANG Chenhao, SONG Guobing, et al. Adaptability analysis of current differential protection in low-frequency transmission lines of offshore wind power[J]. Automation of Electric Power Systems, 2024, 48(1): 131-139.
[21]
郑涛, 康恒. 基于控保协同的柔性低频输电系统电流差动保护性能提升方案[J/OL]. 电工技术学报,1-15.(2024-07-04) [2024-10-12]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240202.
ZHENG Tao, KANG Heng. Scheme for improving current differential protection performance of flexible low-frequency transmission systems based on control-protection coordination[J/OL]. Transactions of China Electrotechnical Society, 1-15. (2024-07-04) [2024-10-12]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240202.
[22]
晁晨栩, 郑晓冬, 邰能灵, 等. 针对新能源场站送出线两相短路的负序阻抗重构距离保护[J]. 电力系统自动化, 2023, 47(22): 101-109.
CHAO Chenxu, ZHENG Xiaodong, TAI Nengling, et al. Distance protection based on negative-sequence impedance reconstruction for phase-to-phase short circuit of renewable power plant transmission lines[J]. Automation of Electric Power Systems, 2023, 47(22): 101-109.
[23]
李海锋, 许永治, 刘沈全, 等. 柔性低频输电系统的故障分量特征及保护适用性分析[J]. 高电压技术, 2024, 50(5): 1987-1996.
LI Haifeng, XU Yongzhi, LIU Shenquan, et al. Analysis of fault component characteristics and protection applicability on flexible low frequency transmission system[J]. High Voltage Engineering, 2024, 50(5): 1987-1996.
[24]
葛耀中. 新型继电保护和故障测距的原理与技术[M]. 2版. 西安: 西安交通大学出版社, 2007.
[25]
段建东, 张保会, 周艺. 超高速暂态方向继电器的研究[J]. 中国电机工程学报, 2005, 25(4): 7-12.
DUAN Jiandong, ZHANG Baohui, ZHOU Yi. Study of ultra-high-speed transient-based directional relay[J]. Proceedings of the CSEE, 2005, 25(4): 7-12.
[26]
LAN T K, XIAO H, LI Y H, et al. Computationally effective frequency transient-based transmission line protection for multiterminal VSC-HVDC[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5925-5935.
[27]
汤兰西, 董新洲. 半波长交流输电线路行波差动电流特性的研究[J]. 中国电机工程学报, 2017, 37(8): 2261-2270.
TANG Lanxi, DONG Xinzhou. Study on the characteristic of travelling wave differential current on half-wave-length AC transmission lines[J]. Proceedings of the CSEE, 2017, 37(8): 2261-2270.
[28]
SHU H C, WANG S X, LEI S G. Single-ended protection method for hybrid HVDC transmission line based on transient voltage characteristic frequency band[J]. Protection and Control of Modern Power Systems, 2023, 8(2): 1-11.
[29]
LIU D, DYŚKO A, HONG Q T, et al. Transient wavelet energy-based protection scheme for inverter-dominated microgrid[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2533-2546.
[30]
郑涛, 宋祥艳. 基于故障暂态行波高低频能量比值的交流输电线路快速保护方案[J]. 电网技术, 2022, 46(12): 4616-4629.
ZHENG Tao, SONG Xiangyan. Fast protection scheme for AC transmission lines based on ratio of high and low frequency energy of transient traveling waves[J]. Power System Technology, 2022, 46(12): 4616-4629.
[31]
LI H, DUAN J D, LEI Y, et al. Ultra-high-speed transient-based directional relay for AC transmission lines connected to LCC-HVDC inverter station[J]. International Journal of Electrical Power & Energy Systems, 2020, 123: 106235.
[32]
DU X T, DUAN J D, YANG W, et al. A novel high-speed transient-based phase selector for AC transmission line connected to LCC-HVDC inverter station[J]. International Journal of Electrical Power & Energy Systems, 2022, 141: 108129.
[33]
孙瑞娟, 梁军, 王克文, 等. 海上风电集电系统研究综述[J]. 电力建设, 2021, 42(6): 105-115.
Abstract
面对能源危机和环境污染的难题,风力发电是有效的解决方式之一。与陆上风电相比,海上风电具有风资源更丰富、节约土地、年利用小时数高等优势,具有广阔的发展前景。集电系统是海上风电场的重要组成部分,影响着整个风电场的规划投资和可靠运行。首先,对交直流集电系统的拓扑结构以及断路器配置方案进行比较分析;其次,分别从经济性和可靠性角度对集电系统的优化设计进行了系统阐述;然后,概括了影响集电系统发展的关键设备及技术现状;最后,总结了集电系统面临的挑战并进行了展望。
SUN Ruijuan, LIANG Jun, WANG Kewen, et al. Overview of offshore wind power collection system[J]. Electric Power Construction, 2021, 42(6): 105-115.

In the face of the energy crisis and environmental pollution problems around the world, wind power generation is one of the effective solutions. Compared with onshore wind power, offshore wind power has the advantages of rich wind resources, no land restriction and high annual utilization hours, so it has broad development prospects. Collection systems are important parts of offshore wind farm, which affect planning investment and reliable operation of the whole wind farm. Firstly, topologies of the AC and DC collection systems and use of circuit breakers are compared and analyzed. Secondly, optimal design of collection systems is systematically explained from the perspectives of economy and reliability. Then, key equipment affecting collection systems development and technical state are summarized. Finally, challenges and future prospect of collection systems are presented.

[34]
叶婧, 蔡俊文, 张磊, 等. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181.
YE Jing, CAI Junwen, ZHANG Lei, et al. Topology optimization of offshore wind power collection system considering actual carrying capacity of submarine cables[J]. Electric Power, 2024, 57(7): 173-181.
[35]
高校平, 张晨浩, 宋国兵, 等. 海上风电低频输电系统低频侧不对称故障控制策略[J]. 电力自动化设备, 2023, 43(10): 160-166.
GAO Xiaoping, ZHANG Chenhao, SONG Guobing, et al. Control strategies of offshore wind power low frequency transmission system under asymmetric fault of low-frequency side[J]. Electric Power Automation Equipment, 2023, 43(10): 160-166.
[36]
王彤彤, 文俊, 靳海强, 等. 换流站交流出线方式对换流变空投的影响[J]. 电力建设, 2021, 42(9): 112-119.
Abstract
近年来,输电网中电缆线路占比增加,电缆线路由于其电抗小、对地电容大可能会影响换流站与交流电网的谐振特性。为了分析换流站交流出线方式对换流变空投的影响,分析了换流变空投时励磁涌流和铁磁谐振现象,建立了架空线路和电缆线路2种换流站交流出线方式。以我国典型±500 kV直流工程换流变为例,利用PSCAD/EMTDC仿真研究了换流站不同出线方式、电缆线路占比及断路器合闸电阻对励磁涌流和铁磁谐振的影响,并提出了相应建议。结果表明:不同出线方式对励磁涌流影响并不显著;在电缆线路出线方式下更易发生铁磁谐振,且电缆占比越高,铁磁谐振发生概率越高;断路器合闸电阻对励磁涌流和铁磁谐振均能有效抑制。
WANG Tongtong, WEN Jun, JIN Haiqiang, et al. Influence of AC outlet mode of converter station on energizing no-load converter transformer[J]. Electric Power Construction, 2021, 42(9): 112-119.

In recent years, the proportion of cable lines in the transmission grid has increased. It may have impact on the resonance characteristics between the converter station and the transmission grid. In order to analyze the effect of the AC outlet mode of converter station on energizing the no-load converter transformer, the phenomenon of inrush current and ferromagnetic resonance is introduced, and different AC outlet modes with overhead lines and cables are established. Taking typical ± 500 kV DC project in China as an example, by means of the PSCAD/EMTDC, the influence of inrush current and ferromagnetic resonance caused by different outlet modes, the ratio of the cable in total lines and the closing resistance of the breaker are analyzed. Results show that different outlet modes have no significant effect on the inrush current, but the cable outlet mode is more likely to cause ferromagnetic resonance, and the higher the cable ratio is, the easier the ferromagnetic resonance occurs. Meanwhile, the suppression effect of closing resistance on inrush current and ferromagnetic resonance is verified.

[37]
黄玲玲, 汤华, 曹家麟, 等. 交流海上变电站设计相关研究综述[J]. 中国电机工程学报, 2017, 37(5): 1351-1360.
HUANG Lingling, TANG Hua, CAO Jialin, et al. Analysis and prospects of offshore AC substation design technology[J]. Proceedings of the CSEE, 2017, 37(5): 1351-1360.
[38]
杨舒婷, 陈新, 黄通, 等. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56(4): 38-45.
YANG Shuting, CHEN Xin, HUANG Tong, et al. Impedance modeling method of offshore wind farm integration through MMC-HVDC with MMC circulation control[J]. Electric Power, 2023, 56(4): 38-45.
[39]
段建东, 张保会, 任晋峰, 等. 超高压输电线路单端暂态量保护元件的频率特性分析[J]. 中国电机工程学报, 2007, 27(1): 37-43.
DUAN Jiandong, ZHANG Baohui, REN Jinfeng, et al. Single-ended transient-based protection for EHV transmission lines basic theory[J]. Proceedings of the CSEE, 2007, 27(1): 37-43.
[40]
傅庆燕, 高亮, 裴翔羽. 基于等效行波的柔性直流电网差动保护研究[J]. 电力建设, 2019, 40(3): 109-118.
Abstract
直流线路保护是高压大容量柔性直流电网亟需解决的关键问题之一。针对目前的通信技术难以满足传统行波差动保护对高速采样数据的实时传输要求这一突出问题,文章提出了基于等效行波的柔性直流电网差动保护方法。作为单端量主保护的后备保护,该方法仅利用少量能表征原故障电流行波关键信息的模极大值进行数据交互,在线路两端重构出能完美复现原故障电流行波的等效故障电流行波,不但大大减少了构造行波差动保护判据所需的通信数据量,而且可实现柔性直流电网故障区域和区内直流线路不同类型故障的可靠、快速识别。最后,在PSCAD/EMTDC中搭建了四端环形柔性直流电网,对所提的基于等效行波的柔性直流电网差动保护方案进行了仿真验证。
FU Qingyan, GAO Liang, PEI Xiangyu. Study on differential protection based on equivalent travelling-wave for VSC-based DC grid[J]. Electric Power Construction, 2019, 40(3): 109-118.
Protection for DC transmission lines is one of the key problems that urgent to be solved in constructing high-voltage and large-capacity VSC-based DC grid in the future. Aiming at the prominent problem that the current communication technology is difficult to meet the requirements of real time transmission of high-speed sampling data proposed by traditional differential protection based on travelling-wave, a new differential protection scheme based on equivalent travelling-wave for VSC-based DC grid is presented by this paper. As a backup protection for primary protection based on single-terminal electrical quantities, a small amount of exchanged modulus maxima which can represent the critical information of the original fault-current travelling-wave are used to reconstruct the equivalent fault-current travelling-wave which can perfectly reproduce the original fault-current travelling-wave in this scheme. As a result, not only the communication data needed to construct the differential protection criterion is greatly reduced, but also the reliable and fast identification of fault location and different types of faults in the internal area could be realized. Finally, a four-terminal loop VSC-based DC grid model is built in PSCAD/EMTDC, and the differential protection scheme based on equivalent travelling-wave is simulated and verified.
[41]
HU Y C, WANG X J, WANG S C. Line-spectrum extraction of ship electric field based on SVMD-AAMPSR[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 73: 9505412.

Funding

National Natural Science Foundation of China(52377070)
PDF(1923 KB)

Accesses

Citation

Detail

Sections
Recommended

/