A Review of Inertia Prediction Methods for Power System with High Penetration Renewable Energy Sources

SHEN Fu, CAO Yang, XU Xiaoyuan, HUA Haochen, WANG Jian, ZENG Fang, QIU Gefei

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (8) : 116-128.

PDF(4702 KB)
PDF(4702 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (8) : 116-128. DOI: 10.12204/j.issn.1000-7229.2025.08.011
Dispatch & Operation

A Review of Inertia Prediction Methods for Power System with High Penetration Renewable Energy Sources

Author information +
History +

Abstract

[Objective] Inertia prediction is critical for frequency control,renewable energy penetration management,fast frequency response analysis,and integrated inertia design of ancillary service markets in the power sector. Predicting system inertia levels is increasingly complex and necessary because a high percentage of renewable power generation is connected to the grid,and the share of conventional controllable generating units is decreasing. [Methods] This paper provides a comprehensive overview of the necessity,challenges,and recent advances in inertia prediction in high-percentage renewable power systems. First,we review the inertia composition of power systems and the development of inertia prediction methods across different periods to analyze the necessity and difficulties of inertia prediction. Then,we present a research framework of inertia prediction methods in power systems with a high proportion of renewable energy,and categorize the inertia prediction methods into those based on statistical and data-driven methods according to their application scenarios and time scales. This classification is elaborated below. In addition,we propose optimization strategies for inertia prediction methods,focusing on accuracy enhancement and goal-oriented approaches,by combining them with existing research results. [Results] We identified key directions that require in-depth future research on power system inertia prediction to provide constructive ideas for advancing inertia management applications. [Conclusions] This study provides an important reference for the future theoretical development and practical application of power system inertia management. It promotes the establishment of a more accurate and practically relevant inertia prediction system to meet actual decision-making needs. This advancement is important for improving the frequency stability and regulation capabilities of the system.

Key words

inertia prediction / data-driven / unit commitment / prediction optimization

Cite this article

Download Citations
SHEN Fu , CAO Yang , XU Xiaoyuan , et al . A Review of Inertia Prediction Methods for Power System with High Penetration Renewable Energy Sources[J]. Electric Power Construction. 2025, 46(8): 116-128 https://doi.org/10.12204/j.issn.1000-7229.2025.08.011

References

[1]
ULBIG A, BORSCHE T S, ANDERSSON G. Impact of low rotational inertia on power system stability and operation[J]. IFAC Proceedings Volumes, 2014, 47(3): 7290-7297.
[2]
文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1856.
WEN Yunfeng, YANG Weifeng, WANG Ronghua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1856.
[3]
TIELENS P, VAN HERTEM D. The relevance of inertia in power systems[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 999-1009.
[4]
MAKOLO P, ZAMORA R, LIE T T. The role of inertia for grid flexibility under high penetration of variable renewables - a review of challenges and solutions[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111223.
[5]
文云峰, 林晓煌. 孤岛与并网模式下微电网最低惯量需求评估[J]. 中国电机工程学报, 2021, 41(6): 2040-2053.
WEN Yunfeng, LIN Xiaohuang. Minimum inertia requirement assessment of microgrids in islanded and grid-connected modes[J]. Proceedings of the CSEE, 2021, 41(6): 2040-2053.
[6]
AHMADYAR A S, RIAZ S, VERBIČ G, et al. A framework for assessing renewable integration limits with respect to frequency performance[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4444-4453.
[7]
GU H J, YAN R F, SAHA T K, et al. Zonal inertia constrained generator dispatch considering load frequency relief[J]. IEEE Transactions on Power Systems, 2020, 35(4): 3065-3077.
[8]
TERZIJA V V. Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation[J]. IEEE Transactions on Power Systems, 2006, 21(3): 1260-1266.
[9]
李兆伟, 方勇杰, 吴雪莲, 等. 频率紧急控制中动作时延和措施量对低惯量系统控制有效性的影响[J]. 电工技术学报, 2024, 39(17): 5394-5405.
LI Zhaowei, FANG Yongjie, WU Xuelian, et al. Influence of action delay and amount on the control effectiveness of low inertia systems in frequency emergency control[J]. Transactions of China Electrotechnical Society, 2024, 39(17): 5394-5405.
[10]
秦川, 任伟, 江叶峰, 等. 频率安全分段控制下轮次切负荷协调优化策略[J]. 电力自动化设备, 2022, 42(7): 261-268.
QIN Chuan, REN Wei, JIANG Yefeng, et al. Coordinated optimization strategy of wheel load shedding under frequency safety subsection control[J]. Electric Power Automation Equipment, 2022, 42(7): 261-268.
[11]
POOLLA B K, BOLOGNANI S, LI N, et al. A market mechanism for virtual inertia[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3570-3579.
[12]
HARTMANN B, VOKONY I, TÁCZI I. Effects of decreasing synchronous inertia on power system dynamics: overview of recent experiences and marketisation of services[J]. International Transactions on Electrical Energy Systems, 2019, 29(12): e12128.
[13]
BADESA L, TENG F, STRBAC G. Economic value of inertia in low-carbon power systems[C]// 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, 2017: 1-6.
[14]
TAMRAKAR U, SHRESTHA D, MAHARJAN M, et al. Virtual inertia: current trends and future directions[J]. Applied Sciences, 2017, 7(7): 654.
[15]
POOLLA B K, BOLOGNANI S, DÖRFLER F. Optimal placement of virtual inertia in power grids[J]. IEEE Transactions on Automatic Control, 2017, 62(12): 6209-6220.
[16]
HEYLEN E, TENG F, STRBAC G. Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111176.
[17]
杨黎, 兰怡希, 林玲, 等. 风储系统中储能虚拟惯量评估与频率支撑技术[J]. 浙江电力, 2024, 43(6): 52-60.
YANG Li, LAN Yixi, LIN Ling, et al. A virtual inertia assessment and frequency support technology for wind-storage power generation system[J]. Zhejiang Electric Power, 2024, 43(6): 52-60.
[18]
张武其, 文云峰, 何烨, 等. 电力系统中长期惯量水平趋势评估及应用[J]. 电力系统自动化, 2024, 48(10): 54-65.
ZHANG Wuqi, WEN Yunfeng, HE Ye, et al. Estimation of medium-and long-term inertia level tendency for power system and its application[J]. Automation of Electric Power Systems, 2024, 48(10): 54-65.
[19]
张武其, 文云峰, 迟方德, 等. 电力系统惯量评估研究框架与展望[J]. 中国电机工程学报, 2021, 41(20): 6842-6856.
ZHANG Wuqi, WEN Yunfeng, CHI Fangde, et al. Research framework and prospect on power system inertia estimation[J]. Proceedings of the CSEE, 2021, 41(20): 6842-6856.
[20]
PRABHAKAR K, JAIN S K, PADHY P K. Inertia estimation in modern power system: a comprehensive review[J]. Electric Power Systems Research, 2022, 211: 108222.
[21]
马骏超, 陆承宇, 王晨旭, 等. 新型电力系统惯量特性及其实时感知技术[J]. 浙江电力, 2024, 43(2): 1-12.
MA Junchao, LU Chengyu, WANG Chenxu, et al. Inertia characteristics and the real-time sensing technology of new-type power systems[J]. Zhejiang Electric Power, 2024, 43(2): 1-12.
[22]
王浩祥, 秦小宇. 新型电力系统背景下基于自适应参数估计电力系统惯量快速估计方法[J]. 电网与清洁能源, 2024, 40(1): 18-28.
WANG Haoxiang, QIN Xiaoyu. A fast estimation method of power system inertia based on adaptive parameter estimation under the background of new power system[J]. Power System and Clean Energy, 2024, 40(1): 18-28.
[23]
李世春, 宋秋爽, 薛臻瑶, 等. 含风电虚拟惯性响应的新能源电力系统惯量估计[J]. 电力工程技术, 2023, 42(2): 84-93.
LI Shichun, SONG Qiushuang, XUE Zhenyao, et al. Inertia estimation of new energy power system with virtual inertia response of wind power[J]. Electric Power Engineering Technology, 2023, 42(2): 84-93.
[24]
王书征, 张少文, 朱海铭, 等. 基于改进弗雷歇算法的虚拟直流电机等效惯量计算[J]. 电力工程技术, 2023, 42(1): 218-225.
WANG Shuzheng, ZHANG Shaowen, ZHU Haiming, et al. Equivalent inertia calculation of virtual DC motor based on improved Frecher algorithm[J]. Electric Power Engineering Technology, 2023, 42(1): 218-225.
[25]
孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16): 5179-5192.
SUN Huadong, WANG Baocai, LI Wenfeng, et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16): 5179-5192.
[26]
ZENG F H, ZHANG J B, CHEN G, et al. Online estimation of power system inertia constant under normal operating conditions[J]. IEEE Access, 2020, 8: 101426-101436.
[27]
BIAN Y K, WYMAN-PAIN H, LI F R, et al. Demand side contributions for system inertia in the GB power system[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3521-3530.
[28]
陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J]. 电网技术, 2017, 41(10): 3095-3103.
CHEN Guoping, LI Mingjie, XU Tao, et al. Practice and challenge of renewable energy development based on interconnected power grids[J]. Power System Technology, 2017, 41(10): 3095-3103.
[29]
SUN M, FENG Y, WALL P, et al. On-line power system inertia calculation using wide area measurements[J]. International Journal of Electrical Power & Energy Systems, 2019, 109: 325-331.
[30]
DU P W, MATEVOSYAN J. Forecast system inertia condition and its impact to integrate more renewables[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1531-1533.
[31]
刘林, 王大龙, 綦晓, 等. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290.
Abstract
海上风电作为构建以新能源为主体的新型电力系统的重要组成部分将在沿海城市迅速发展,大规模海上风电并网将大幅削减系统惯量,降低频率抗扰能力。为此,提出基于双锁相环的海上风场综合惯量控制策略。首先,从理论上分析了锁相环对风机虚拟惯量的影响机理,探究了参数变化下风机惯量支撑能力和系统频率响应特性;其次,通过分析锁相环参数变化对风机一次调频能力的消极影响,提出基于变参数-快速双锁相环的海上风场综合惯量调频策略;最后,通过仿真验证所提调频策略的有效性。结果表明,综合惯量控制策略在频率响应快速性、抑制测量噪声等方面均具有显著优势。
LIU Lin, WANG Dalong, QI Xiao, et al. Study on double phase-locked loop on the synthetic inertia control of offshore wind farm frequency regulation[J]. Power Generation Technology, 2024, 45(2): 282-290.

To build the new power system with the main body of new energy, the offshore wind farm (OWF) is an important part and has been rapidly developed in coastal cities. However, the large-scale OWFs also reduce the inertia of power systems, which significantly decreases the anti-disturbance capability of system frequency Therefore, a synthetic inertia control strategy for OWF based on dual phase-locked loops (PLL) was proposed. First, the influence mechanism of PLL on virtual inertia of wind turbine was theoretically analyzed for variable parameter PLL. And the variation rule of wind turbine inertia support capacity and system frequency response characteristics with parameter changing PLL was explored. Then, the double PLL based OWF frequency regulation strategy was proposed through analyzing the negative effect of primary frequency regulation characteristics caused by the variable parameter of PLL. Finally, the effectiveness of the proposed frequency regulation strategy was verified though simulations. The results show that the proposed method has significant advantages in frequency response speed and frequency measurement noise suppression.

[32]
王雪, 刘林, 卓庆东, 等. 基于虚拟惯量控制的新型电力系统功率差前馈振荡抑制方法[J]. 中国电力, 2024, 57(4): 68-76.
WANG Xue, LIU Lin, ZHUO Qingdong, et al. Power difference feed-forward oscillation suppression method for new power system based on virtual inertial control[J]. Electric Power, 2024, 57(4): 68-76.
[33]
曾辉, 苏安龙, 葛延峰, 等. 考虑负荷特性的区域电网在线转动惯量快速估计算法[J]. 电网技术, 2023, 47(2): 423-436.
ZENG Hui, SU Anlong, GE Yanfeng, et al. Fast estimation algorithm for on-line moment of inertia of regional power grid considering load characteristics[J]. Power System Technology, 2023, 47(2): 423-436.
[34]
鲁宗相, 姜继恒, 乔颖, 等. 新型电力系统广义惯量分析与优化研究综述[J]. 中国电机工程学报, 2023, 43(5): 1754-1776.
LU Zongxiang, JIANG Jiheng, QIAO Ying, et al. A review on generalized inertia analysis and optimization of new power systems[J]. Proceedings of the CSEE, 2023, 43(5): 1754-1776.
[35]
于琳琳, 蒋小亮, 巴文岚, 等. 基于PCA-OLS模型的系统等效惯量中长期预测[J]. 电力系统及其自动化学报, 2024, 36(6): 101-109.
YU Linlin, JIANG Xiaoliang, BA Wenlan, et al. Medium-and long-term forecasting of system equivalent inertia based on PCA-OLS model[J]. Proceedings of the CSU-EPSA, 2024, 36(6): 101-109.
[36]
PRAKASH V, BHAKAR R, TIWARI H, et al. System inertia prediction for primary frequency response adequacy under uncertain wind generation[C]// 2018 8th IEEE India International Conference on Power Electronics (IICPE). IEEE, 2018: 1-6.
[37]
PRAKASH V, BHAKAR R, TIWARI H, et al. Inertia and primary frequency response assessment under uncertain photovoltaic generation[C]// 2018 8th IEEE India International Conference on Power Electronics (IICPE). IEEE, 2018: 1-6.
[38]
杨博, 陈义军, 姚伟, 等. 基于新一代人工智能技术的电力系统稳定评估与决策综述[J]. 电力系统自动化, 2022, 46(22): 200-223.
YANG Bo, CHEN Yijun, YAO Wei, et al. Review on stability assessment and decision for power systems based on new-generation artificial intelligence technology[J]. Automation of Electric Power Systems, 2022, 46(22): 200-223.
[39]
RIQUELME-DOMINGUEZ J M, CARRANZA-GARCÍA M, LARA-BENÍTEZ P, et al. A machine learning-based methodology for short-term kinetic energy forecasting with real-time application: Nordic power system case[J]. International Journal of Electrical Power & Energy Systems, 2024, 156: 109730.
[40]
SHARMA S, HUANG S H, SARMA N D R. System inertial frequency response estimation and impact of renewable resources in ERCOT interconnection[C]// 2011 IEEE Power and Energy Society General Meeting. IEEE, 2011: 1-6.
[41]
CAO X, STEPHEN B, ABDULHADI I F, et al. Switching Markov Gaussian models for dynamic power system inertia estimation[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3394-3403.
[42]
SCHMITT A, LEE B. Steady-state inertia estimation using a neural network approach with modal information[C]// 2017 IEEE Power & Energy Society General Meeting. IEEE, 2017: 1-5.
[43]
CHIODO E, LAURIA D, MOTTOLA F. On-line Bayes estimation of rotational inertia for power systems with high penetration of renewables. part I: theoretical methodology[C]// 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). IEEE, 2018: 835-840.
[44]
ALLELLA F, CHIODO E, GIANNUZZI G M, et al. On-line estimation assessment of power systems inertia with high penetration of renewable generation[J]. IEEE Access, 2020, 8: 62689-62697.
[45]
GONZALEZ-LONGATT F, ACOSTA M N, CHAMORRO H R, et al. Short-term kinetic energy forecast using a structural time series model: study case of Nordic power system[C]// 2020 International Conference on Smart Systems and Technologies (SST). IEEE, 2020: 173-178.
[46]
GRAHAM J, HEYLEN E, BIAN Y K, et al. Benchmarking explanatory models for inertia forecasting using public data of the Nordic area[C]// 2022 17th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE, 2022: 1-6.
[47]
PAIDI E S N R, MARZOOGHI H, YU J, et al. Development and validation of artificial neural network-based tools for forecasting of power system inertia with wind farms penetration[J]. IEEE Systems Journal, 2020, 14(4): 4978-4989.
[48]
CHANG J M, DU Y, CHEN X Y, et al. Forecasting based virtual inertia control of PV systems for islanded micro-grid[C]// 2019 29th Australasian Universities Power Engineering Conference (AUPEC). IEEE, 2019: 1-6.
[49]
张磊, 李海涛, 熊致知, 等. 基于可解释性XGBoost的电力系统惯量短期预测方法[J]. 电力建设, 2023, 44(8): 22-30.
Abstract
对于新型电力系统,提前预测系统惯量水平是消除系统惯量薄弱风险的重要前提。而预测所使用的机器学习模型大多是“黑箱”模型,存在可解释性不足的问题。为此,提出了一种基于可解释性极端梯度提升算法 (extreme gradient boosting,XGBoost)的电力系统惯量短期预测方法。该方法根据系统惯量响应特性分析,选择电力系统运行数据和气象数据作为输入特征。基于SHAP归因方法构建可解释性XGBoost的解释机制,通过计算Shapley值来量化各特征的重要程度,从而对模型预测结果进行多维度解构分析。以实际系统为例进行实证分析,结果表明,所提方法能够有效地预测电力系统短期惯量以及解释特征对预测的影响。
ZHANG Lei, LI Haitao, XIONG Zhizhi, et al. Short-term prediction method based on interpretable XGBoost for power system inertia[J]. Electric Power Construction, 2023, 44(8): 22-30.

Predicting the level of in advance in new power systems is essential to eliminate the risk of a weak system inertia, and black-box machine learning models, which have insufficient interpretability, are widely used for system-inertia predictions. Therefore, this paper introduces a short-term prediction method, based on interpretable extreme gradient boosting (XGBoost), for power system inertia. Based on the analysis of the system inertia response characteristics, the method selects the power system operation and meteorological data as input features. The interpretation mechanism of XGBoost was constructed based on Shapley additive explanation values. By calculating the Shapley value to quantify the importance of each feature, the model prediction results can be deconstructed into multiple dimensions. Simulations were performed using a realistic photovoltaic system, and the results showed that the proposed method can effectively predict the short-term inertia of a power system as well as elucidate the influence of the features on the predicted results.

[50]
ZHANG L, GUO Z H, TAO Q H, et al. XGBoost-based short-term prediction method for power system inertia and its interpretability[J]. Energy Reports, 2023, 9: 1458-1469.
[51]
HEYLEN E, BROWELL J, TENG F. Probabilistic day-ahead inertia forecasting[J]. IEEE Transactions on Power Systems, 2022, 37(5): 3738-3746.
[52]
李梓锋, 张娜, 徐熙林, 等. 考虑风险偏好的快速频率响应备用容量规划[J]. 高电压技术, 2021, 47(10): 3475-3484.
LI Zifeng, ZHANG Na, XU Xilin, et al. Reserved capacity planning of fast frequency response considering risk preference[J]. High Voltage Engineering, 2021, 47(10): 3475-3484.
[53]
LIU M Y, CHEN J R, MILANO F. On-line inertia estimation for synchronous and non-synchronous devices[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2693-2701.
[54]
ASHTON P M, SAUNDERS C S, TAYLOR G A, et al. Inertia estimation of the GB power system using synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2015, 30(2): 701-709.
[55]
ELA E, GEVORGIAN V, TUOHY A, et al. Market designs for the primary frequency response ancillary service: part I: motivation and design[J]. IEEE Transactions on Power Systems, 2014, 29(1): 421-431.
[56]
巴文岚, 文云峰, 叶希, 等. 风电高渗透电网等效惯量概率预测方法[J]. 电力自动化设备, 2023, 43(3): 124-130, 165.
BA Wenlan, WEN Yunfeng, YE Xi, et al. Probability prediction method of equivalent inertia for high wind power penetration grid[J]. Electric Power Automation Equipment, 2023, 43(3): 124-130, 165.
[57]
HE W, YUAN X M, HU J B. Inertia provision and estimation of PLL-based DFIG wind turbines[J]. IEEE Transactions on Power Systems, 2017, 32(1): 510-521.
[58]
WANG S, HU J B, YUAN X M. Virtual synchronous control for grid-connected DFIG-based wind turbines[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(4): 932-944.
[59]
TAN B D, ZHAO J B. Data-driven time-varying inertia estimation of inverter-based resources[J]. IEEE Transactions on Power Systems, 2023, 38(2): 1795-1798.
[60]
GUO J P, WANG X Z, OOI B T. Estimation of inertia for synchronous and non-synchronous generators based on ambient measurements[J]. IEEE Transactions on Power Systems, 2022, 37(5): 3747-3757.
[61]
PHURAILATPAM C, RATHER Z H, BAHRANI B, et al. Estimation of non-synchronous inertia in AC microgrids[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 1903-1914.
[62]
GORBUNOV A, PENG J C, BIALEK J W, et al. Can center-of-inertia model be identified from ambient frequency measurements[J]. IEEE Transactions on Power Systems, 2022, 37(3): 2459-2462.
[63]
PAHASA J, POTEJANA P, NGAMROO I. MPC-based virtual energy storage system using PV and air conditioner to emulate virtual inertia and frequency regulation of the low-inertia microgrid[J]. IEEE Access, 2022, 10: 133708-133719.
[64]
PENG Q, YANG Y H, LIU T Q, et al. Coordination of virtual inertia control and frequency damping in PV systems for optimal frequency support[J]. CPSS Transactions on Power Electronics and Applications, 2020, 5(4): 305-316.
[65]
QI Y, YANG T B, FANG J Y, et al. Grid inertia support enabled by smart loads[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 947-957.
[66]
项颂, 苏鹏, 吴坚, 等. 基于多源储能协同的交直流送端系统惯量优化控制模型[J]. 中国电力, 2023, 56(4): 68-76.
XIANG Song, SU Peng, WU Jian, et al. Inertia optimization control model of AC/DC sending-end system based on multi-source energy storage coordination[J]. Electric Power, 2023, 56(4): 68-76.
[67]
WU L, SHAHIDEHPOUR M, LI T. Stochastic security-constrained unit commitment[J]. IEEE Transactions on Power Systems, 2007, 22(2): 800-811.
[68]
WU L, SHAHIDEHPOUR M, LI T. Cost of reliability analysis based on stochastic unit commitment[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1364-1374.
[69]
ZHANG H P, LI R, CHEN Y, et al. Risk-aware objective-based forecasting in inertia management[J]. IEEE Transactions on Power Systems, 2024, 39(2): 4612-4623.
[70]
HONG T, PINSON P, WANG Y, et al. Energy forecasting: a review and outlook[J]. IEEE Open Access Journal of Power and Energy, 2020, 7: 376-388.
[71]
BROWELL J, FASIOLO M. Probabilistic forecasting of regional net-load with conditional extremes and gridded NWP[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 5011-5019.
[72]
SÁEZ D, ÁVILA F, OLIVARES D, et al. Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(2): 548-556.
[73]
LI T, SHAHIDEHPOUR M, LI Z Y. Risk-constrained bidding strategy with stochastic unit commitment[J]. IEEE Transactions on Power Systems, 2007, 22(1): 449-458.
[74]
LI G, CHIANG H D. Toward cost-oriented forecasting of wind power generation[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2508-2517.
[75]
CHEN X B, YANG Y F, LIU Y K, et al. Feature-driven economic improvement for network-constrained unit commitment: a closed-loop predict-and-optimize framework[J]. IEEE Transactions on Power Systems, 2022, 37(4): 3104-3118.
[76]
MUÑOZ M A, MORALES J M, PINEDA S. Feature-driven improvement of renewable energy forecasting and trading[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3753-3763.
[77]
CARRIERE T, KARINIOTAKIS G. An integrated approach for value-oriented energy forecasting and data-driven decision-making application to renewable energy trading[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6933-6944.
[78]
STRATIGAKOS A, CAMAL S, MICHIORRI A, et al. Prescriptive trees for integrated forecasting and optimization applied in trading of renewable energy[J]. IEEE Transactions on Power Systems, 2022, 37(6): 4696-4708.
[79]
MUÑOZ M A, PINEDA S, MORALES J M. A bilevel framework for decision-making under uncertainty with contextual information[J]. Omega, 2022, 108: 102575.
[80]
ALRASHEEDI A F, ALNOWIBET K A, ALSHAMRANI A M. A smart predict-and-optimize framework for microgrid’s bidding strategy in a day-ahead electricity market[J]. Electric Power Systems Research, 2024, 228: 110016.
[81]
MILANO F, DÖRFLER F, HUG G, et al. Foundations and challenges of low-inertia systems (invited paper)[C]// 2018 Power Systems Computation Conference (PSCC). IEEE, 2018: 1-25.

Funding

National Natural Science Foundation of China(52107097)
Yunnan Revitalizing Talent Plan(KKRD202204021)
Yunnan Fundamental Research Projects(202101BE070001-061)
Yunnan Fundamental Research Projects(202201AU070111)
High-level Platform Construction Project of Kunming University of Science and Technology(KKZ7202004004)
PDF(4702 KB)

Accesses

Citation

Detail

Sections
Recommended

/