Optimization Methodology for Carbon Capture Reformation Schemes in Thermal Power Plants Considering the Power Flexible Ramping Demand

WU Kailang, SHAN Lanqing, BO Liming, CHENG Xueting, LIU Xinyuan, CAI Zhi, GUO Hongye, LI Yinxiao

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (9) : 27-41.

PDF(1873 KB)
PDF(1873 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (9) : 27-41. DOI: 10.12204/j.issn.1000-7229.2025.09.003
Intelligent Analysis of Balance Decision-making and Comprehensive Planning of Flexible Resources in New Power System·Hosted by WANG Jianxue, ZHANG Yao·

Optimization Methodology for Carbon Capture Reformation Schemes in Thermal Power Plants Considering the Power Flexible Ramping Demand

Author information +
History +

Abstract

[Objective] In the context of high-percentage renewable energy integration, to satisfy the system flexibility and low-carbon demand, we propose an optimization method for the carbon capture reformation of thermal power plants considering the flexible power ramping demand. [Methods] First, a calculation model for the power system flexibility demand is established to address the ramping demand surge caused by large-scale wind and photovoltaic power integration. Second, a flexible operation model of thermal power units considering carbon capture reformation is established, and the flexible ramping supply capacity is quantified. Subsequently, considering the uncertainty of the load and renewable energy, a flexible ramping demand constraint and a fuzzy opportunity-constrained model are introduced to establish a carbon capture reformation planning model for thermal power plants. This model jointly solves the carbon capture reformation planning and operation optimization problems of thermal power units to obtain an optimal carbon capture reformation solution. Finally, the effectiveness of the planning model is verified using examples, and the impacts of different unit carbon penalties, renewable energy integration ratios, and confidence levels on the carbon capture reformation results are analyzed. [Results] Simulation results showed that after the optimal carbon capture reformation of thermal power plants, the carbon emissions of the power system were significantly reduced, the renewable energy curtailment rate was significantly reduced, and the total operating cost of the system was reduced by 9.44%. [Conclusions] Through optimal carbon capture reformation of thermal power plants, the output downward regulation space and ramping capability of thermal power plants can be improved, which can promote the accommodation of renewable energy while reducing the carbon emissions of the power system, thus enhancing the economic efficiency of system operation.

Key words

flexible ramping demand / carbon capture reformation of thermal power units / fuzzy opportunity constraint / economic dispatch / carbon capture

Cite this article

Download Citations
WU Kailang , SHAN Lanqing , BO Liming , et al . Optimization Methodology for Carbon Capture Reformation Schemes in Thermal Power Plants Considering the Power Flexible Ramping Demand[J]. Electric Power Construction. 2025, 46(9): 27-41 https://doi.org/10.12204/j.issn.1000-7229.2025.09.003

References

[1]
全球能源互联网发展合作组织. 中国2060年前碳中和研究报告[R]. 北京: 中国电力出版社, 2021.
[2]
IPCC. Mitigation of climate change: contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge, United Kingdom: Cambridge University Press, 2014.
[3]
郭鸿业, 陈启鑫, 夏清, 等. 电力市场中的灵活调节服务: 基本概念、均衡模型与研究方向[J]. 中国电机工程学报, 2017, 37(11): 3057-3066, 3361.
GUO Hongye, CHEN Qixin, XIA Qing, et al. Flexible ramping product in electricity markets: basic concept, equilibrium model and research prospect[J]. Proceedings of the CSEE, 2017, 37(11): 3057-3066, 3361.
[4]
FOWIE M. The duck has landed[EB/OL]. (2016-05-02) [2024-07-06]. https://energyathaas.wordpress.com/2016/05/02/the-duck-has-landed/.
[5]
ZHANG H X, CAO Y J, ZHANG Y, et al. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data[J]. Applied Energy, 2018, 216: 172-182.
[6]
California Independent System Operator. Addendum-draft final technical appendix-flexible ramping product[R]. CAISO, 2016.
[7]
曾鸣, 王雨晴. 提升电力系统综合调节能力支撑新型电力系统建设: 解读《电力并网运行管理规定》《电力辅助服务管理办法》[J]. 中国电力企业管理, 2022(1): 8-10.
ZENG Ming, WANG Yuqing. Improving the comprehensive regulation ability of power system to support the construction of new power system: interpretation of “regulations on the management of power grid-connected operation” and “measures for the management of power auxiliary services”[J]. China Power Enterprise Management, 2022(1): 8-10.
[8]
康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11.
[9]
牟春华, 居文平, 黄嘉驷, 等. 火电机组灵活性运行技术综述与展望[J]. 热力发电, 2018, 47(5): 1-7.
MU Chunhua, JU Wenping, HUANG Jiasi, et al. Review and prospect of technologies of enhancing the flexibility of thermal power units[J]. Thermal Power Generation, 2018, 47(5): 1-7.
[10]
康重庆, 陈启鑫, 夏清. 低碳电力技术的研究展望[J]. 电网技术, 2009, 33(2): 1-7.
KANG Chongqing, CHEN Qixin, XIA Qing. Prospects of low-carbon electricity[J]. Power System Technology, 2009, 33(2): 1-7.
[11]
程耀华, 杜尔顺, 田旭, 等. 电力系统中的碳捕集电厂: 研究综述及发展新动向[J]. 全球能源互联网, 2020, 3(4): 339-350.
CHENG Yaohua, DU Ershun, TIAN Xu, et al. Carbon capture power plants in power systems: review and latest research trends[J]. Journal of Global Energy Interconnection, 2020, 3(4): 339-350.
[12]
袁鑫, 刘骏, 陈衡, 等. 碳捕集技术应用对燃煤机组调峰能力的影响[J]. 发电技术, 2024, 45(3): 373-381.
Abstract
目的 分析碳捕集技术对燃煤电厂调峰能力的影响机制,量化碳捕集技术对燃煤电厂发电效率的影响。 方法 以国内某典型燃煤电厂为例,选取燃烧后碳捕集方案,通过EBSILON软件构建常规燃煤火电机组和碳捕集电厂的模拟模型,得出碳捕集电厂的运行区间,对比分析了碳捕集电厂与常规燃煤电厂的运行结果,对机组的调峰性能的变化展开了研究。 结果 与常规燃煤电厂相比,碳捕集电厂等效输出功率下降了1%~2%,净输出功率下降了20%~30%,全场净效率下降了8%~10%。 结论 碳捕集系统的加入会使电厂在效率降低的同时获得更大的下调峰深度和更快的调峰响应速度。
YUAN Xin, LIU Jun, CHEN Heng, et al. Effect of carbon capture technology application on peak shaving capacity of coal-fired units[J]. Power Generation Technology, 2024, 45(3): 373-381.

Objectives The mechanism of the impact of carbon capture technology on the peaking capacity of coal-fired power plants was analyzed, and the impact of carbon capture technology on the power generation efficiency of coal-fired power plants was quantified. Methods A typical coal-fired power plant was used as an example, and a post-combustion carbon capture scheme was selected. The simulation model of the conventional coal-fired thermal power unit and the carbon capture power plant was constructed by EBSILON software. The operation interval of the carbon capture power plant was derived. A comparative analysis of the operation of a carbon capture power plant and a conventional coal-fired power plant was conducted, and the variation in the peaking performance of the units was investigated. Results The equivalent output power of the carbon capture power plant decreases by 1%-2%, the net output power decreases by 20%-30%, and the net efficiency of the whole field decreases by 8%-10% compared with that of the conventional coal-fired power plant. Conclusions The addition of a carbon capture system would allow the plant to gain greater downward peaking depth and faster peaking response while reducing efficiency.

[13]
韩丽, 王冲, 于晓娇, 等. 考虑风电爬坡灵活调节的碳捕集电厂低碳经济调度[J]. 电工技术学报, 2024, 39(7): 2033-2045.
HAN Li, WANG Chong, YU Xiaojiao, et al. Low-carbon and economic dispatch considering the carbon capture power plants with flexible adjustment of wind power ramp[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2033-2045.
[14]
寇洋, 武家辉, 张华, 等. 考虑碳捕集与CVaR的电力系统低碳经济调度[J]. 电力系统保护与控制, 2023, 51(11): 131-140.
KOU Yang, WU Jiahui, ZHANG Hua, et al. Low carbon economic dispatch for a power system considering carbon capture and CVaR[J]. Power System Protection and Control, 2023, 51(11): 131-140.
[15]
寇洋, 武家辉, 江欢, 等. 计及碳捕集和旋转备用配置的低碳优化运行[J]. 电力建设, 2024, 45(1): 102-111.
Abstract
为降低电力系统碳排放量,促进大规模风电的并网与消纳,并考虑风电不确定性给系统运行带来的影响,提出了计及碳捕集和旋转备用容量配置的低碳优化运行方法。首先,对综合灵活运行碳捕集电厂的运行机理和备用原理进行分析。其次,考虑风电与负荷预测误差引起系统运行风险,使用条件风险价值(conditional value-at-risk,CVaR)度量优化运行过程中的风险,以系统各项运行成本最优为目的,建立所提方法的低碳优化调度模型。最后,使用拉丁超立方采样以及场景缩减方法将随机性问题进行确定化处理,以IEEE 39节点系统为例进行分析,验证了碳捕集电厂能够降低CO<sub>2</sub>排放和为系统提供旋转备用容量,同时也为调度决策人员提供更多的选择方案,使系统的低碳性、稳健性与经济性得到提升。
KOU Yang, WU Jiahui, JIANG Huan, et al. Low carbon optimized operation considering carbon capture and spinning reserve capacity[J]. Electric Power Construction, 2024, 45(1): 102-111.

This paper proposes a low-carbon optimization methodology that considers carbon capture and rotating standby capacity allocation to reduce the carbon emissions of power systems, promote grid connection and consumption of large-scale wind power, and study the impact of wind power uncertainty on system operation. First, the operating mechanism and standby principle of the integrated flexible operation of a carbon capture plant are analyzed. Second, the system operation risk caused by wind power and load forecast error is considered, and the risk during the optimization process is measured using the conditional value-at-risk (CVaR), and a low-carbon optimal dispatch model of the proposed methodology is established to optimize the operation cost of the system. Finally, the stochastic problem in this paper is determined using Latin hypercubic sampling and scenario reduction. The IEEE 39-node system is analyzed as an example, which verifies that the carbon capture plant can reduce CO2 emissions and provide rotating standby capacity for the system. Additionally, it provides more options for the scheduling decision-makers to improve the low-carbon optimization, robustness, and economy of the system.

[16]
舒征宇, 贾可凡, 李黄强, 等. 计及碳捕集的含新能源电网低碳调度策略[J]. 电力工程技术, 2024, 43(3): 78-87, 139.
SHU Zhengyu, JIA Kefan, LI Huangqiang, et al. Low-carbon dispatching strategy for new energy grid considering carbon capture plant[J]. Electric Power Engineering Technology, 2024, 43(3): 78-87, 139.
[17]
陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46(6): 2042-2054.
CHEN Dengyong, LIU Fang, LIU Shuai. Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power System Technology, 2022, 46(6): 2042-2054.
[18]
赵振宇, 李炘薪. 基于阶梯碳交易的碳捕集电厂-电转气虚拟电厂低碳经济调度[J]. 发电技术, 2023, 44(6): 769-780.
Abstract
在能源互补和低碳经济的背景下,虚拟电厂(virtual power plant,VPP)是实现区域资源优化配置和新能源消纳的有效载体。在技术层面,通过碳捕集电厂(carbon capture power plant,CCPP)和电转气(power-to-gas,P2G)装置来实现CO<sub>2</sub>的循环利用,建立碳捕集电厂-电转气耦合模型,并在负荷侧引入考虑用户满意度的价格型需求响应模型;在低碳政策方面,将阶梯型碳交易机制引入VPP,对碳排放进行约束。然后以总成本最小为目标,建立VPP低碳经济调度模型。通过设置不同调度场景进行对比,验证所建模型在VPP低碳经济运行方面的有效性,并通过敏感性分析探究阶梯碳交易参数对VPP碳排放量与成本的影响,结果表明所建模型对VPP进行低碳经济调度具有指导意义。
ZHAO Zhenyu, LI Xinxin. Low-carbon economic dispatch based on ladder carbon trading virtual power plant considering carbon capture power plant and power-to-gas[J]. Power Generation Technology, 2023, 44(6): 769-780.

Under the background of energy complementarity and low-carbon economy, virtual power plant (VPP) is an effective carrier for achieving optimal allocation of regional resources and new energy consumption. At the technical level,the CO2 recycling through carbon capture power plant (CCPP) and power-to-gas (P2G) conversion devices was realized, a CCPP-P2G coupling model was established, and a price based demand response model considering user satisfaction on the load side was introduced. In terms of low-carbon policy, the ladder carbon trading mechanism was introduced into VPP to constrain carbon emissions. Then, with the goal of minimizing the total cost, a low-carbon economic dispatch model for VPP was established. By setting different scheduling scenarios for comparison, the effectiveness of the model in low-carbon economy operation of VPP was verified, and the impact of carbon trading parameters on the carbon emissions and costs of VPP was explored through sensitivity analysis. The results show that the model has guiding significance for VPP low-carbon economic scheduling.

[19]
李逸超, 胥栋, 徐刚, 等. 计及碳捕集和多能流的虚拟电厂多目标优化调度[J]. 浙江电力, 2023, 42(10): 34-44.
LI Yichao, XU Dong, XU Gang, et al. Multi-objective optimal scheduling of virtual power plant considering carbon capture and multi-energy flow[J]. Zhejiang Electric Power, 2023, 42(10): 34-44.
[20]
贠保记, 张恩硕, 张国, 等. 考虑综合需求响应与“双碳” 机制的综合能源系统优化运行[J]. 电力系统保护与控制, 2022, 50(22): 11-19.
YUN Baoji, ZHANG Enshuo, ZHANG Guo, et al. Optimal operation of an integrated energy system considering integrated demand response and a “dual carbon” mechanism[J]. Power System Protection and Control, 2022, 50(22): 11-19.
[21]
冯帅, 袁至, 李骥, 等. 碳交易背景下基于综合协调储能系统的碳捕集电厂优化调度[J]. 中国电力, 2023, 56(6): 139-147.
FENG Shuai, YUAN Zhi, LI Ji, et al. Optimal scheduling of carbon capture power plants based on integrated coordinated energy storage system under the background of carbon trading[J]. Electric Power, 2023, 56(6): 139-147.
[22]
李畸勇, 郑一飞, 刘斌, 等. 基于主从博弈的含碳捕集与热电联产综合能源系统优化运行[J]. 电测与仪表, 2024, 61(6): 10-19.
LI Jiyong, ZHENG Yifei, LIU Bin, et al. Optimal operation of an integrated energy system with carbon capture system and combined heating and power based on a master-slave game[J]. Electrical Measurement & Instrumentation, 2024, 61(6): 10-19.
[23]
轩昂, 刘骏, 彭维珂, 等. 面向煤制氢电厂CCUS改造的规划方法及碳足迹评估[J/OL]. 中国电机工程学报, 2024: 1-13. (2024-06-18)[2024-07-06]. https://doi.org/10.13334/j.0258-8013.pcsee.240492.
XUAN Ang, LIU Jun, PENG Weike, et al. Planning method and carbon footprint evaluation of CCUS transformation for coal-based hydrogen production power plant[J/OL]. Proceedings of the CSEE, 2024: 1-13. (2024-06-18)[2024-07-06]. https://doi.org/10.13334/j.0258-8013.pcsee.240492.
[24]
邹世豪, 曹永吉, 张恒旭, 等. 考虑碳捕集电厂运行灵活性的网-储联合规划[J]. 高电压技术, 2024, 50(11): 5164-5173.
ZOU Shihao, CAO Yongji, ZHANG Hengxu, et al. Joint grid-storage planning considering operational flexibility of carbon capture power plant[J]. High Voltage Engineering, 2024, 50(11): 5164-5173.
[25]
卢志刚, 祁艳君, 杨俊强, 等. 碳捕集系统在火电厂中的优化配置[J]. 电力系统自动化, 2011, 35(7): 34-37, 85.
LU Zhigang, QI Yanjun, YANG Junqiang, et al. Optimal allocation of carbon capture systems in power plants[J]. Automation of Electric Power Systems, 2011, 35(7): 34-37, 85.
[26]
卢志刚, 夏明昭, 张晓辉. 基于多阶段减排规划的发电厂碳捕集系统优化配置[J]. 中国电机工程学报, 2011, 31(35): 65-71.
LU Zhigang, XIA Mingzhao, ZHANG Xiaohui. Carbon capture systems optimal allocation scheme for multi-stage emission reduction planning in power plants[J]. Proceedings of the CSEE, 2011, 31(35): 65-71.
[27]
季震, 陈启鑫, 张宁, 等. 含碳捕集电厂的低碳电源规划模型[J]. 电网技术, 2013, 37(10): 2689-2696.
JI Zhen, CHEN Qixin, ZHANG Ning, et al. Low-carbon generation expansion planning model incorporating carbon capture power plant[J]. Power System Technology, 2013, 37(10): 2689-2696.
[28]
钟嘉庆, 王一鸣, 赵志锋, 等. 低碳电源规划不确定性多目标鲁棒优化研究[J]. 太阳能学报, 2020, 41(9): 114-120.
ZHONG Jiaqing, WANG Yiming, ZHAO Zhifeng, et al. Research on multi-objective robust optimization about low carbon generation expansion planning considering uncertainty[J]. Acta Energiae Solaris Sinica, 2020, 41(9): 114-120.
[29]
徐浩, 李华强. 火电机组灵活性改造规划及运行综合随机优化模型[J]. 电网技术, 2020, 44(12): 4626-4638.
XU Hao, LI Huaqiang. Planning and operation stochastic optimization model of power systems considering the flexibility reformation[J]. Power System Technology, 2020, 44(12): 4626-4638.
[30]
杨寅平, 曾沅, 秦超, 等. 面向深度调峰的火电机组灵活性改造规划模型[J]. 电力系统自动化, 2021, 45(17): 79-88.
YANG Yinping, ZENG Yuan, QIN Chao, et al. Planning model for flexibility reformation of thermal power units for deep peak regulation[J]. Automation of Electric Power Systems, 2021, 45(17): 79-88.
[31]
国家能源局山东监管办公室. 山东电力爬坡辅助服务市场交易规则(征求意见稿)[EB/OL]. (2023-08-08) [2024-07-06]. https://www.eesia.cn/upload/files/2023/8/e624098e851b9dfa.pdf.
[32]
杨雪, 王明强, 胡召永, 等. 精细考虑时刻间净负荷波动不确定性的机组组合[J]. 高电压技术, 2023, 49(11): 4839-4848.
YANG Xue, WANG Mingqiang, HU Zhaoyong, et al. Unit commitment considering fluctuation uncertainty of net load between adjacent periods[J]. High Voltage Engineering, 2023, 49(11): 4839-4848.
[33]
胡晓静, 李慧, 崔晖, 等. 考虑灵活爬坡辅助服务和弃风惩罚的现货电能量市场出清模型[J]. 电力系统保护与控制, 2024, 52(4): 133-143.
HU Xiaojing, LI Hui, CUI Hui, et al. Cleaning model of a spot electric energy market considering flexible ramping auxiliary services and wind curtailment penalty[J]. Power System Protection and Control, 2024, 52(4): 133-143.
[34]
陈启鑫, 季震, 康重庆, 等. 碳捕集电厂不同运行方式的电碳特性分析[J]. 电力系统自动化, 2012, 36(18): 109-115, 152.
CHEN Qixin, JI Zhen, KANG Chongqing, et al. Analysis on relation between power generation and carbon emission of carbon capture power plant in different operation modes[J]. Automation of Electric Power Systems, 2012, 36(18): 109-115, 152.
[35]
崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42(16): 5869-5886, 6163.
CUI Yang, DENG Guibo, ZENG Peng, et al. Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42(16): 5869-5886, 6163.
[36]
崔杨, 曾鹏, 惠鑫欣, 等. 考虑碳捕集电厂综合灵活运行方式的低碳经济调度[J]. 电网技术, 2021, 45(5): 1877-1886.
CUI Yang, ZENG Peng, HUI Xinxin, et al. Low-carbon economic dispatch considering the integrated flexible operation mode of carbon capture power plant[J]. Power System Technology, 2021, 45(5): 1877-1886.
[37]
杨宇玄, 高栋梁, 陈一鸣, 等. 考虑碳捕集和气网混氢的气电耦合系统低碳经济调度[J]. 中国电力, 2023, 56(10): 1-10.
YANG Yuxuan, GAO Dongliang, CHEN Yiming, et al. Low carbon economic dispatch of gas electricity coupling system considering carbon capture and hydrogen mixing in gas grid[J]. Electric Power, 2023, 56(10): 1-10.
[38]
崔杨, 周慧娟, 仲悟之, 等. 考虑源荷两侧不确定性的含风电电力系统低碳调度[J]. 电力自动化设备, 2020, 40(11): 85-93.
CUI Yang, ZHOU Huijuan, ZHONG Wuzhi, et al. Low-carbon scheduling of power system with wind power considering uncertainty of both source and load sides[J]. Electric Power Automation Equipment, 2020, 40(11): 85-93.
[39]
熊虎, 向铁元, 陈红坤, 等. 含大规模间歇式电源的模糊机会约束机组组合研究[J]. 中国电机工程学报, 2013, 33(13): 36-44.
XIONG Hu, XIANG Tieyuan, CHEN Hongkun, et al. Research of fuzzy chance constrained unit commitment containing large-scale intermittent power[J]. Proceedings of the CSEE, 2013, 33(13): 36-44.
[40]
赵腾, 邬炜, 高艺. 碳中和目标下实现碳循环的电力系统供需规划[J]. 电网技术, 2022, 46(12): 4895-4907.
ZHAO Teng, WU Wei, GAO Yi. Power system demand and supply planning for achieving carbon neutrality considering carbon cycle within power and gas systems[J]. Power System Technology, 2022, 46(12): 4895-4907.
[41]
陈继明, 徐乾, 李勇, 等. 计及源荷不确定性和碳捕集虚拟电厂的电-气互联系统优化调度[J]. 太阳能学报, 2023, 44(10): 9-18.
Abstract
在电-气综合能源系统的基础上,加入碳捕集系统以及储碳系统,构建碳捕集-电转气-风电-气电虚拟电厂联合运行模型,分析联合运行模式相较于碳捕集电厂独立运行的优势。其次,考虑风电、负荷的不确定性带来的影响,通过引入模糊参数,建立计及源荷不确定性的模糊机会约束模型,分析不确定性对于碳捕集能力的影响。最后,基于改进的IEEE-39节点系统和天然气20节点算例系统,通过GUROBI求解器验证所提碳捕集虚拟电厂联合运行模型在考虑风电和负荷不确定性下可有效消纳风电、降低系统的碳排放。
CHEN Jiming, XU Qian, LI Yong, et al. Optimal dispatch of electricity-natural gas interconnection system considering source-load uncertainty and virtual power plant with carbon capture[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 9-18.
On the basis of the electricity-natural gas interconnection system, the carbon capture system and the carbon storage system are added, and the CCS-P2G-WT-GT combined operation model of virtual power plant is established, and the advantages of the combined operation mode is analyzed. Secondly, the influence of wind power and load uncertainty is considered. By introducing fuzzy parameters, a fuzzy opportunity constraint model is stablished to analyze the influence of uncertainty on carbon capture capacity. Finally, based on the improved IEEE-39 power system and the 20-node natural gas calculation example system, the wind power consumption and the carbon emissions reduction of the proposed combined operation model of carbon capture virtual power plant under the condition of considering the uncertainties of wind power and load are verified by the GUROBI solver.

Funding

Science and Technology Project of State Grid Corporation of China“Research and Application of Key Technologies in the Market of Ramping Ancillary Services for New Power System”(5108-202315041A-1-1-ZN)
PDF(1873 KB)

Accesses

Citation

Detail

Sections
Recommended

/