Mid-Long Term Optimal Scheduling of Cascade Hydro-Photovoltaic-Storage System Considering Matching DC Transmission with Receiving-End Load and Frequency Safety Constraints

AN Zhi, XING Dong, JIA Hongyi, LIANG Wenju, FAN Li, ZHANG Peng, TANG Xiaoxiao, HE Chuan

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (9) : 144-158.

PDF(2854 KB)
PDF(2854 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (9) : 144-158. DOI: 10.12204/j.issn.1000-7229.2025.09.012
Renewable Energy and Energy Storage

Mid-Long Term Optimal Scheduling of Cascade Hydro-Photovoltaic-Storage System Considering Matching DC Transmission with Receiving-End Load and Frequency Safety Constraints

Author information +
History +

Abstract

[Objective] In response to the call for “dual carbon” and to promote the consumption of renewable energy, a mid-long term optimal scheduling of cascade hydro-photovoltaic-storage system considering matching DC transmission with receiving-end load and frequency safety constraints is proposed. [Methods] Firstly, targeting hydropower retention in the sending end and the demand for peak shaving demand of load in the receiving end, an optimized regulation mode for DC external power transmission is constructed. Furthermore, considering the frequency safety of system operation, with the pursuit of minimizing system operation costs and penalty caused by abandoned solar, a mid-long term optimal scheduling model of cascade hydro-photovoltaic-storage system is proposed. On this basis, to address the uncertainty of photovoltaic output, a two-stage distributionally robust optimization model based on comprehensive norm constraints is proposed. The first stage optimizes the system scheduling decisions in the basic scenario, while the second stage minimizes the penalty for solar curtailment and solves it through column and constraint generation algorithms. [Results] Case validation shows that: optimization modeling of the power transfer mode of the DC contact line can fully invoke the coordinated optimization potential between the DC outgoing transmission and the generating units at the sending end; the larger the proportion of hydropower retention and the PV penetration, the smaller the dependence of the system on thermal generating units, and the smaller the demand for peaking at the receiving end; considering the frequency security constraints in the dispatch model is conducive to the prevention of frequency overruns in the wake of accidents; using the distribution robust optimization method to model the problem considering PV uncertainty can obtain optimized dispatch decisions with both safety and economy in mind. Distributed robust optimization method is used to model the problem considering the uncertainty of PV, which can obtain the optimal scheduling decision with both safety and economy. [Conclusions] The proposed mid-long term optimal scheduling strategy of cascaded hydro-photovoltaic-storage system can adapt to the current trend of high penetration of new energy, and the distributed robust optimization model can take into account both economy and security, so as to cope with the challenges brought by the uncertainty of new energy prediction to the power system scheduling in the actual power grid.

Key words

cascade hydro-photovoltaic-storage system / hydropower retention / DC transmission / frequency safety / uncertainty / mid-long term operation

Cite this article

Download Citations
AN Zhi , XING Dong , JIA Hongyi , et al . Mid-Long Term Optimal Scheduling of Cascade Hydro-Photovoltaic-Storage System Considering Matching DC Transmission with Receiving-End Load and Frequency Safety Constraints[J]. Electric Power Construction. 2025, 46(9): 144-158 https://doi.org/10.12204/j.issn.1000-7229.2025.09.012

References

[1]
谭显东, 刘俊, 徐志成, 等. “双碳” 目标下“十四五” 电力供需形势[J]. 中国电力, 2021, 54(5): 1-6.
TAN Xiandong, LIU Jun, XU Zhicheng, et al. Power supply and demand balance during the 14th Five-Year Plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54(5): 1-6.
[2]
刘珊珊, 李柯睿, 刘柏康, 等. 绿证—碳联合机制下含多类型需求响应和氢能多元利用的综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(5): 203-215, 225.
LIU Shanshan, LI Kerui, LIU Baikang, et al. Optimal dispatching of integrated energy systems with diverse demand response and multifaceted hydrogen utilization under green certificate-carbon joint mechanism[J]. Journal of Electric Power Science and Technology, 2024, 39(5): 203-215, 225.
[3]
张冠宇, 付炜, 陈晨, 等. 面向电-气-热综合能源系统的恢复力研究现状与展望[J]. 智慧电力, 2023, 51(1): 69-77.
ZHANG Guanyu, FU Wei, CHEN Chen, et al. Status and prospects of resilience research for electric-gas-thermal integrated energy system[J]. Smart Power, 2023, 51(1): 69-77.
[4]
孙志媛, 彭博雅, 孙艳. 考虑多能互补的电力电量平衡优化调度策略[J]. 中国电力, 2024, 57(1): 115-122.
SUN Zhiyuan, PENG Boya, SUN Yan. Optimal dispatch strategy of power and electricity balance based on multi-energy complementation[J]. Electric Power, 2024, 57(1): 115-122.
[5]
胥洪远, 龙太聪, 赵启道, 等. 考虑电转气消纳水电的水-电-气系统低碳鲁棒优化调度[J]. 中国电力, 2022, 55(11): 163-174.
XU Hongyuan, LONG Taicong, ZHAO Qidao, et al. Day-ahead coordinated low carbon robust scheduling of hydro-ElectricityNatural gas system considering power-to-gas to accommodate excessive hydro generation[J]. Electric Power, 2022, 55(11): 163-174.
[6]
王永利, 向皓, 郭璐, 等. 面向多能互补的分布式光伏与电氢混合储能规划优化研究[J]. 电网技术, 2024, 48(2): 564-576.
WANG Yongli, XIANG Hao, GUO Lu, et al. Research on planning optimization of distributed photovoltaic and electro-hydrogen hybrid energy storage for multi-energy complementarity[J]. Power System Technology, 2024, 48(2): 564-576.
[7]
蒋光梓, 彭杨, 纪昌明, 等. 计及价格型需求响应的水风光互补短期调度[J]. 水力发电学报, 2023, 42(10): 1-12.
JIANG Guangzi, PENG Yang, JI Changming, et al. Hydro-wind-solar power complementary short-term optimal scheduling considering participation of price-based demand response[J]. Journal of Hydroelectric Engineering, 2023, 42(10): 1-12.
[8]
李湃, 卢慧, 李驰, 等. 多能互补发电系统电/热储能容量双层优化配置方法[J]. 中国电力, 2025, 58(3): 55-64.
LI Pai, LU Hui, LI Chi, et al. Bi-level capacity optimization for battery/thermal energy storage system in multi-energy complementary power generation system[J]. Electric Power, 2025, 58(3): 55-64.
[9]
付文龙, 卓庆澳, 吴月超, 等. 多能互补提供频率支撑的储能容量分布鲁棒规划方法[J]. 电网技术, 2024, 48(1): 282-297.
FU Wenlong, ZHUO Qing’ao, WU Yuechao, et al. Distributed robust planning for energy storage capacity with multi-energy complementarity providing frequency support[J]. Power System Technology, 2024, 48(1): 282-297.
[10]
安源, 郑申印, 苏瑞, 等. 风光水储多能互补发电系统双层优化研究[J]. 太阳能学报, 2023, 44(12): 510-517.
Abstract
针对风电、光伏大规模并网造成的供电可靠性问题和弃风、弃光问题,结合抽水蓄能、储能电站以及电解水制氢的调节特性,提出一种风光水储多能互补系统双层优化调度策略。上层模型以系统全生命周期运行经济性最优为目标,旨在优化系统各单元的容量配置,保证供电可靠性和风光消纳水平;下层模型以系统每个调度周期内经济性最优为目标,旨在充分发挥储能的调峰能力,实现系统经济运行。该模型利用KKT条件和Big-M法将双层模型转换成单层线性规划问题,通过Matlab中调用CPLEX求解器进行求解,结果表明所提策略能有效提高系统供电可靠性和风光的消纳水平,验证了该模型的有效性。
AN Yuan, ZHENG Shenyin, SU Rui, et al. Research on two-layer optimization of wind-solar-water-storage multi energy complementary power generation system[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 510-517.
In view of the power supply reliability problems caused by the large-scale grid connection of wind power and photovoltaic power, and wind and light abandonment problems, combined with the regulation characteristics of pumped storage, energy storage power plants and electrolytic water hydrogen production, a two-layer optimal dispatching strategy for wind water storage multi energy complementary system is proposed. The upper layer model aims to optimize the capacity configuration of each unit of the system to ensure the reliability of power supply and the level of wind and solar energy consumption, with the objective of optimizing the operating economy of the system throughout its life cycle; The lower level model aims to optimize the economy of the system in each dispatching cycle, and aims to give full play to the peak shaving output of energy storage to achieve economic operation of the system. The model uses KKT condition and Big-M method to transform the two-layer model into a single-layer linear programming problem, and calls CPLEX solver in Matlab to solve it. The results show that the proposed strategy can effectively improve the power supply reliability of the system and the absorption level of wind and solar energy, which verifies the effectiveness of the model.
[11]
崔杨, 李崇钢, 张节潭, 等. 考虑直流通道灵活性的含光热电站系统供热期协调调度方法[J]. 高电压技术, 2022, 48(6): 2054-2064.
CUI Yang, LI Chonggang, ZHANG Jietan, et al. Coordinated scheduling method in heating season of concentrating solar power system considering flexibility of HVDC tieline[J]. High Voltage Engineering, 2022, 48(6): 2054-2064.
[12]
钟海旺, 夏清, 丁茂生, 等. 以直流联络线运行方式优化提升新能源消纳能力的新模式[J]. 电力系统自动化, 2015, 39(3): 36-42.
ZHONG Haiwang, XIA Qing, DING Maosheng, et al. A new mode of HVDC Tie-line operation optimization for maximizing renewable energy accommodation[J]. Automation of Electric Power Systems, 2015, 39(3): 36-42.
[13]
ZHOU M, ZHAI J Y, LI G Y, et al. Distributed dispatch approach for bulk AC/DC hybrid systems with high wind power penetration[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3325-3336.
[14]
崔杨, 李崇钢, 赵钰婷, 等. 考虑风-光-光热联合直流外送的源-网-荷多时段优化调度方法[J]. 中国电机工程学报, 2022, 42(2): 559-573.
CUI Yang, LI Chonggang, ZHAO Yuting, et al. Source-grid-load multi-time interval optimization scheduling method considering wind-photovoltaic-photothermal combined DC transmission[J]. Proceedings of the CSEE, 2022, 42(2): 559-573.
[15]
李晖, 刘栋, 秦继朔, 等. 考虑风光出力不确定性的新能源基地直流外送随机规划方法研究[J]. 电网技术, 2024, 48 (7):2795-2803.
LI Hui, LIU Dong, QIN Jishuo, et al. Stochastic planning method for UHVDC transmission of renewable energy power base considering wind and photovoltaic output uncertainties[J]. Power System Technology, 2024, 48 (7):2795-2803.
[16]
李明轩, 范越, 汪莹, 等. 新能源大基地风光储容量协调优化配置[J]. 电力自动化设备, 2024, 44(3): 1-8.
LI Mingxuan, FAN Yue, WANG Ying, et al. Coordinated optimal configuration of wind-photovoltaic-energy storage capacity for large-scale renewable energy bases[J]. Electric Power Automation Equipment, 2024, 44(3): 1-8.
[17]
徐波, 伍声宇, 冯君淑, 等. 基于系统动力学模型的光伏发电装机容量推演分析方法[J]. 智慧电力, 2024, 52(7): 88-95.
XU Bo, WU Shengyu, FENG Junshu, et al. Deductive analysis method of photovoltaic power installed capacity based on system dynamics model[J]. Smart Power, 2024, 52(7): 88-95.
[18]
陈明媛, 莫东, 刘起兴, 等. 计及发电容量充裕度的容量市场多能源定价模型[J]. 电力科学与技术学报, 2024, 39(5): 270-278.
CHEN Mingyuan, MO Dong, LIU Qixing, et al. A multi-energy pricing model for capacity markets considering generating capacity adequacy[J]. Journal of Electric Power Science and Technology, 2024, 39(5): 270-278.
[19]
曾小青, 唐超雯. 分时电价环境下计及新能源消纳的虚拟电厂优化调度研究[J]. 电力科学与技术学报, 2023, 38(3): 24-34.
ZENG Xiaoqing, TANG Chaowen. Research on optimization of virtual power plants dispatch by considering the consumption of new energy under time-of-use electricity price environment[J]. Journal of Electric Power Science and Technology, 2023, 38(3): 24-34.
[20]
陈雨潇, 龚锦霞, 赵文彬, 等. 面向新型电力系统的变速抽蓄电站调频策略研究[J]. 智慧电力, 2023, 51(3): 104-110.
CHEN Yuxiao, GONG Jinxia, ZHAO Wenbin, et al. Frequency modulation strategy for variable-speed pumped-storage power station for new power system[J]. Smart Power, 2023, 51(3): 104-110.
[21]
李登峰, 张澳归, 刘育明, 等. 考虑设备安全的新能源场站参与电网频率协调控制方法[J]. 智慧电力, 2023, 51(9): 8-15, 96.
LI Dengfeng, ZHANG Aogui, LIU Yuming, et al. Frequency coordination control method of power system contained renewable energy stations considering equipment safety[J]. Smart Power, 2023, 51(9): 8-15, 96.
[22]
鲁志远, 刘世林, 范保程, 等. 含广域混合储能互联电力系统的负荷频率控制[J]. 电力科学与技术学报, 2023, 38(6): 96-104.
LU Zhiyuan, LIU Shilin, FAN Baocheng, et al. Load frequency control of interconnected power system with wide-area hybrid energy storage[J]. Journal of Electric Power Science and Technology, 2023, 38(6): 96-104.
[23]
游文霞, 刘斌, 李世春, 等. 风电并网下的抽水蓄能鲁棒最优调频控制策略[J]. 中国电力, 2023, 56(5): 32-40.
YOU Wenxia, LIU Bin, LI Shichun, et al. Robust optimal frequency regulation control strategy for pumped storage in grid-connected wind power systems[J]. Electric Power, 2023, 56(5): 32-40.
[24]
林毅, 林威, 吴威, 等. 电化学储能和抽水蓄能电站参与多市场联合运行价值分析[J]. 中国电力, 2023, 56(7): 175-185.
LIN Yi, LIN Wei, WU Wei, et al. Analysis on operation value of electrochemical energy storage and pumped storage participating in a joint market[J]. Electric Power, 2023, 56(7): 175-185.
[25]
ZHANG Z Y, DU E S, TENG F, et al. Modeling frequency dynamics in unit commitment with a high share of renewable energy[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4383-4395.
[26]
TROVATO V, BIALECKI A, DALLAGI A. Unit commitment with inertia-dependent and multispeed allocation of frequency response services[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1537-1548.
[27]
TENG F, TROVATO V, STRBAC G. Stochastic scheduling with inertia-dependent fast frequency response requirements[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1557-1566.
[28]
吴限, 李卫东, 李正文, 等. 大扰动下考虑电化学储能的主动频率响应优化控制策略[J]. 电力系统自动化, 2023, 47(17): 118-127.
WU Xian, LI Weidong, LI Zhengwen, et al. Optimal control strategy of active frequency response against large disturbance considering electrochemical energy storage[J]. Automation of Electric Power Systems, 2023, 47(17): 118-127.
[29]
周海强, 鲁锦文, 薛峰, 等. 计及风电综合惯性控制的电力系统扩展频率响应模型[J]. 电力系统自动化, 2023, 47(8): 198-205.
ZHOU Haiqiang, LU Jinwen, XUE Feng, et al. Extended frequency response model for power system considering wind power synthetic inertia control[J]. Automation of Electric Power Systems, 2023, 47(8): 198-205.
[30]
YIN Y, LIU T Q, HE C. Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems[J]. Energy, 2019, 187: 115944.
[31]
BERTSIMAS D, LITVINOV E, SUN X A, et al. Adaptive robust optimization for the security constrained unit commitment problem[J]. IEEE Transactions on Power Systems, 2013, 28(1): 52-63.
[32]
WANG C, LIU F, WANG J H, et al. Robust risk-constrained unit commitment with large-scale wind generation: an adjustable uncertainty set approach[J]. IEEE Transactions on Power Systems, 2017, 32(1): 723-733.
[33]
周安平, 杨明, 翟鹤峰, 等. 计及风电功率矩不确定性的分布鲁棒实时调度方法[J]. 中国电机工程学报, 2018, 38(20): 5937-5946.
ZHOU Anping, YANG Ming, ZHAI Hefeng, et al. Distributionally robust real-time dispatch considering moment uncertainty of wind generation[J]. Proceedings of the CSEE, 2018, 38(20): 5937-5946.
[34]
税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J]. 中国电机工程学报, 2018, 38(24): 7235-7247, 7450.
SHUI Yue, LIU Junyong, GAO Hongjun, et al. A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J]. Proceedings of the CSEE, 2018, 38(24): 7235-7247, 7450.
[35]
陈保瑞, 刘天琪, 何川, 等. 考虑需求响应的源网荷协调分布鲁棒长期扩展规划[J]. 中国电机工程学报, 2021, 41(20): 6886-6900.
CHEN Baorui, LIU Tianqi, HE Chuan, et al. Distributionally robust coordinated expansion planning for generation and transmission systems with demand response[J]. Proceedings of the CSEE, 2021, 41(20): 6886-6900.
[36]
谭晶, 何川, 陈保瑞, 等. 考虑水光蓄互补和直流外送的电力系统分布鲁棒优化调度方法[J]. 中国电机工程学报, 2024, 44(15): 5947-5960.
TAN Jing, HE Chuan, CHEN Baorui, et al. Distributionally robust optimal scheduling method of power system considering hydropower-photovoltaic-pumped storage complementarity and DC transmission[J]. Proceedings of the CSEE, 2024, 44(15): 5947-5960.
[37]
CHÁVEZ H, BALDICK R, SHARMA S. Governor rate-constrained OPF for primary frequency control adequacy[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1473-1480.
[38]
BABAYEV D A. Piece-wise linear approximation of functions of two variables[J]. Journal of Heuristics, 1997, 2(4): 313-320.
[39]
YANG Z F, ZHONG H W, BOSE A, et al. A linearized OPF model with reactive power and voltage magnitude: a pathway to improve the MW-only DC OPF[J]. IEEE Transactions on Power Systems, 2018, 33(2): 1734-1745.
[40]
DING T, YANG Q R, YANG Y H, et al. A data-driven stochastic reactive power optimization considering uncertainties in active distribution networks and decomposition method[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4994-5004.
[41]
ZHAO C Y, GUAN Y P. Data-driven stochastic unit commitment for integrating wind generation[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2587-2596.
[42]
YANG L, LI Z H, XU Y L, et al. Frequency constrained scheduling under multiple uncertainties via data-driven distributionally robust chance-constrained approach[J]. IEEE Transactions on Sustainable Energy, 2023, 14(2): 763-776.
[43]
徐浩, 李华强. 火电机组灵活性改造规划及运行综合随机优化模型[J]. 电网技术, 2020, 44(12): 4626-4638.
XU Hao, LI Huaqiang. Planning and operation stochastic optimization model of power systems considering the flexibility reformation[J]. Power System Technology, 2020, 44(12): 4626-4638.

Funding

Science and Technology Project of State Grid Corporation of China(5100-202356394A-2-4-KJ)
PDF(2854 KB)

Accesses

Citation

Detail

Sections
Recommended

/