PDF(1738 KB)
Optimization Dispatch of a Biomass Integrated Energy System Considering Reward-Penalty Continuous Carbon Trading and Diversified Hydrogen Energy Applications
XIONG Chaoyu, XU Dan, ZHONG Zhengxing, YANG Dechang, ZHANG Lijun
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (10) : 99-112.
PDF(1738 KB)
PDF(1738 KB)
Optimization Dispatch of a Biomass Integrated Energy System Considering Reward-Penalty Continuous Carbon Trading and Diversified Hydrogen Energy Applications
[Objective] To enhance the energy utilization efficiency and flexibility of biomass integrated energy systems(IES), promote the accommodation of high-penetration renewable energy, achieve efficient hydrogen utilization, and reduce system operating costs and carbon emissions, this paper proposes an optimized operation strategy for biomass IES that incorporates reward-penalty continuous carbon trading and diversified hydrogen energy applications. [Methods] First, a comprehensive energy system is modeled by incorporating a biomass organic Rankine cycle combined with heat and power (ORC-CHP) units, wind turbines, photovoltaic units, a diversified hydrogen utilization module, and various energy storage devices. The hydrogen utilization module holistically integrates hydrogen applications including electrolyzers (EL), methane reactors (MR), methanol synthesis reactors (MSR), and hydrogen fuel cell (HFC) devices with adjustable heat-to-power ratios. Second, a reward-penalty continuous carbon trading mechanism based on non-uniform emission intervals is established. Finally, an optimal scheduling model is constructed with the objective of minimizing the total operating costs of the system, including energy procurement costs, carbon trading expenses, wind and solar curtailment penalties, and methanol sales revenue, and is solved using the commercial solver CPLEX. [Results] The simulation analysis demonstrates that compared to traditional biomass CHP units, the proposed strategy can reduce system carbon emissions by 28.35% and lower total operating costs by 16.20%. Furthermore, it reduces the system carbon emissions by 271.6 kg relative to the stepped carbon trading mechanism, confirming that the proposed strategy enhances both the low-carbon performance and economic efficiency of the IES. [Conclusions] The adoption of biomass ORC-CHP technology can significantly reduce system operational costs and carbon emissions. Diversified hydrogen energy applications enhance the local utilization rate of renewable energy while improving the stability and economic performance of IES, combining low-carbon benefits with commercial revenue. The continuous incentive-penalty carbon trading mechanism with non-uniform emission intervals effectively avoids boundary arbitrage issues inherent in stepped mechanisms, offering more flexible guidance for emission reduction behaviors, thereby enhancing the system's low-carbon performance and economic efficiency.
biomass energy / organic Rankine cycle / reward-penalty continuous carbon trading / diversified hydrogen energy applications / integrated energy system(IES)
| [1] |
|
| [2] |
王婷, 张晶, 高冲, 等. 绿证-碳市场互认抵消下综合能源系统优化调度[J]. 智慧电力, 2025, 53(2): 104-110, 118.
|
| [3] |
秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电-热-气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42(14): 8-13, 22.
|
| [4] |
翟晶晶, 吴晓蓓, 傅质馨, 等. 考虑需求响应与光伏不确定性的综合能源系统鲁棒优化[J]. 中国电力, 2020, 53(8): 9-18.
|
| [5] |
殷超. 考虑碳捕集与需求响应的综合能源系统低碳调度[D]. 西安: 西安理工大学, 2023.
|
| [6] |
郭斯琦, 楼劲, 郑凌蔚. 考虑热网特性的综合能源系统混合时间尺度调度方法[J]. 电力建设, 2024, 45(12): 16-26.
|
| [7] |
彭寒梅, 张玲, 谭貌, 等. 重构与抢修协同下电-气区域综合能源系统多阶段博弈故障恢复方法[J]. 电力建设, 2024, 45(12): 27-38.
|
| [8] |
周任军, 吴燕榕, 潘轩, 等. 考虑电热需求响应的区域综合能源系统储能容量优化配置[J]. 电力科学与技术学报, 2023, 38(1):11-17.
|
| [9] |
李家桐, 谢宁, 王承民, 等. 基于CHP机组碳排放分析的综合能源系统低碳调度优化方法[J]. 智慧电力, 2024, 52(6): 31-37, 83.
|
| [10] |
姜飞, 肖昌麟, 易子木, 等. 含光伏与生物质能的生态农业综合能源系统多能协同及低碳运行策略[J]. 中国电机工程学报, 2024, 44(4): 1352-1364.
|
| [11] |
姜德威, 高红均, 贺帅佳, 等. 考虑生物质能和农业柔性负荷的农业产业园区综合能源系统规划方法[J]. 电网技术, 2024, 48(5): 1836-1845.
|
| [12] |
王守文, 李国祥, 闫文文, 等. 计及改进生物质燃气和阶梯碳交易的综合能源系统低碳经济调度[J]. 电力系统及其自动化学报, 2024, 36(2): 126-134, 143.
|
| [13] |
庞镇函. 基于有机朗肯循环的生物质能综合能源系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
| [14] |
李金鸿, 刘洋, 许立雄. 计及综合需求响应的综合能源系统集群多能源精细化日前交易模型[J]. 电力建设, 2024, 45(12): 83-99.
|
| [15] |
陈维荣, 冉韵早, 韩莹, 等. 考虑两阶段电转气的区域综合能源系统优化调度[J]. 西南交通大学学报, 2023, 58(6): 1221-1230.
|
| [16] |
张林垚, 吴桂联, 倪识远, 等. 考虑参数自适应阶梯碳交易的含混氢: 碳捕集耦合的农村综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(3): 228-241.
|
| [17] |
陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
|
| [18] |
张新闻, 刘玉洁, 刘文泽. 基于阶梯碳交易的含生物天然气与电醇联产的综合能源系统优化调度[J]. 西北工程技术学报, 2024, 23(4): 364-371, 378.
|
| [19] |
袁文腾, 陈亮, 王春波, 等. 基于氨储能技术的电转氨耦合风-光-火综合能源系统双层优化调度[J]. 中国电机工程学报, 2023, 43(18): 6992-7003.
|
| [20] |
崔杨, 孙喜斌, 付小标, 等. 考虑电转氨和生物质废能转换的农村化工综合能源系统低碳调度方法[J]. 电网技术, 2024, 48(8): 3350-3360.
|
| [21] |
武群丽, 白佳怡. 考虑阶梯碳交易及两阶段电转气的综合能源系统优化调度[J/OL]. 华北电力大学学报(自然科学版), 2024: 1-12. (2024-04-19)[2025-05-15]. https://kns.cnki.net/kcms/detail/13.1212.TM.20240419.1446.002.html.
|
| [22] |
陈景文, 叶鹏程, 刘耀先, 等. 基于阶梯碳交易的含碳捕集与高耗能负荷的虚拟电厂优化调度[J/OL]. 电网技术, 1-17. (2025-04-18) [2025-05-15]. https://doi.org/10.13335/j.1000-3673.pst.2025.0155.
|
| [23] |
易纯, 肖辉, 吴公平, 等. 含电、冷、热、气的区域综合能源系统优化运行[J]. 电力科学与技术学报, 2024, 39(4): 215-221.
|
| [24] |
周永旺, 许灿城, 蔡政彤, 等. 考虑奖惩碳交易的含灵活性设备联合运行的综合能源系统优化[J/OL]. 上海交通大学学报, 1-25. (2025-01-16) [2025-05-14]. https://doi.org/10.16183/j.cnki.jsjtu.2024.291.
|
| [25] |
|
| [26] |
|
| [27] |
吕博文. 复混生物质有机朗肯循环系统的热力性能与成本分析[J]. 能源与节能, 2024(1): 58-62.
|
| [28] |
陈明健, 陈胜, 王异成, 等. 考虑氢能绿证的电-氢综合能源系统机会约束优化调度[J]. 电力自动化设备, 2023, 43(12): 206-213.
|
| [29] |
刘珊珊, 李柯睿, 刘柏康, 等. 绿证-碳联合机制下含多类型需求响应和氢能多元利用的综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(5): 203-215, 225.
|
| [30] |
周奕佳, 彭弘毅, 晏鸣宇. 氢-电-热综合能源系统快速风险评估方法[J]. 智慧电力, 2025, 53(5): 1-7.
|
| [31] |
王心玉, 李金航, 陈衡, 等. 同时参与绿证交易-碳交易的区域多能互补电力系统优化调度[J]. 动力工程学报, 2025, 45(2): 315-324.
采用基于火力发电的风光储联合多能互补系统优化调度模型,利用风电和光伏2种可再生能源发电机组,与火电机组配合发电,以满足城市基本负荷。利用储能单元补偿可再生能源机组发电的不稳定性,且为了进一步减少系统的碳排放量,引入绿证交易-碳交易机制,并在2种交易下分别采用阶梯价格,绿证带来的碳减排量可以抵消部分碳排,调整参与绿证市场的可交易绿证数量和参与碳市场的可交易碳排放量。算例以系统综合运行收益最高为目标,同时考虑系统的运行经济性和低碳性,对所提出的模型进行仿真分析,算例结果证明了该模型在减碳和经济性方面的合理性和有效性。
An optimal scheduling model for a wind-solar-storage combined multi-energy complementary system based on thermal power generation was adopted and the wind and photovoltaic renewable energy generation units were used in coordination with thermal power units to meet basic urban load demands. Energy storage units were utilized to compensate for the instability of power generation of renewable energy units, and to further reduce the carbon emissions of the system, the green certificate trading-carbon trading mechanism was introduced. Under both trading schemes, a ladder pricing system was applied. The carbon emission reduction brought by the green certificate can offset part of the carbon emission, and the number of tradable green certificates participating in the green certificate market and the tradable carbon emissions participating in the carbon market were adjusted. The example aimed to maximize the comprehensive operating income of the system, while considering the operation economy and low carbon of the system. The simulation analysis of the proposed model was carried out. The result of the example proves the rationality and effectiveness of the model in terms of carbon reduction and economy.
|
| [32] |
王汝田, 杨凌, 王秀云. 计及碳捕集电厂与电制氢的综合能源系统低碳优化运行[J]. 电气工程学报, 2024, 19(4): 368-376.
|
| [33] |
|
| [34] |
张铭鹰, 赵毅, 张添硕, 等. 综合能源系统低碳经济优化调度研究[J]. 东北电力技术, 2024, 45(3): 38-43.
|
| [35] |
陈锦鹏. 考虑阶梯式碳交易与灵活性资源的综合能源系统优化调度[D]. 武汉: 武汉大学, 2022.
|
| [36] |
卢锦玲, 刘婧萱, 王惠东. 计及阶梯式碳-绿证联合交易和需求响应的生物质能综合能源系统优化[J]. 电力科学与工程, 2024, 40(7): 10-25.
|
| [37] |
叶荣江, 高冲, 金耀, 等. 基于大规模制氢和碳交易的综合能源系统优化调度研究[J/OL]. 电力科学与工程, 2025: 1-10. (2025-05-09)[2025-05-15]. https://kns.cnki.net/kcms/detail/13.1328.TK.20250508.1852.034.html.
|
/
| 〈 |
|
〉 |