Identification of Vulnerable and Susceptible Points in Distribution Networks Under Multiple Types of Extreme Weather Scenarios

MA Rui, WANG Weihao, PENG Zepu, YANG Yuchao, SHI Qingxin, WANG Zhiqiang

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (12) : 82-95.

PDF(18171 KB)
PDF(18171 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (12) : 82-95. DOI: 10.12204/j.issn.1000-7229.2025.12.008

Identification of Vulnerable and Susceptible Points in Distribution Networks Under Multiple Types of Extreme Weather Scenarios

Author information +
History +

Abstract

[Objective] In view of the impact of various extreme weather events on complex urban distribution networks,we propose an assessment method to identify vulnerable and susceptible points in distribution networks,especially electrical transformers with distribution functions that incur high outage losses. [Methods] First,we introduce a unified and parameterized integrated model of vulnerability. By employing kernel functions,cumulative transformations,and parameterized mappings to construct a unified framework,the model achieves a synergy between mechanism- and data-driven approaches,which makes it adaptable to diverse modeling scenarios. Second,the method fully considers the influence of land-use types on the operational environment and disaster risk of transformer equipment. We developed a vulnerability index system based on land-use categories by refining the vulnerability assessment from a spatial perspective. Additionally,we also propose a scenario probability sampling and reduction approach; by utilizing Monte Carlo sampling and sample-average approximation techniques,the failure probabilities computed by the model are converted into a set of failure scenarios to improve the efficiency and accuracy of failure scenario analysis. Finally,a simulation analysis was conducted on a 10 kV distribution network in a certain area of Beijing. [Results] The results demonstrate that the proposed model and method were able to identify vulnerabilities and susceptible points in the distribution network under various extreme weather conditions. Moreover,by deploying emergency power supply vehicles at susceptible points and positioning emergency repair resources at vulnerability points,indicators such as load loss and the number of affected users can be significantly improved. [Conclusions] The experimental results validate the effectiveness of the proposed approach in guiding power grid planning,construction,operation,and maintenance.

Key words

multiple extreme weather events / vulnerability points / susceptible points / distribution network vulnerability assessment / Monte Carlo simulation

Cite this article

Download Citations
MA Rui , WANG Weihao , PENG Zepu , et al . Identification of Vulnerable and Susceptible Points in Distribution Networks Under Multiple Types of Extreme Weather Scenarios[J]. Electric Power Construction. 2025, 46(12): 82-95 https://doi.org/10.12204/j.issn.1000-7229.2025.12.008

References

[1]
刘文霞, 黄钰辰, 万海洋, 等. 复杂网络理论在能源互联网脆弱性与鲁棒性研究中的应用[J]. 智慧电力, 2021, 49(1): 14-21.
LIU Wenxia, HUANG Yuchen, WAN Haiyang, et al. Application of complex network theory in vulnerability and robustness evaluation of energy Internet[J]. Smart Power, 2021, 49(1): 14-21.
[2]
LI W. Risk assessment of power systems: models, methods, and applications[M]. 2nd Edition. JohnWiley Sons, Inc, 2014.
[3]
吴任博, 黄奕俊. 高比例可再生能源接入下含自愈性能的分布式配电网重构策略研究[J]. 发电技术, 2024, 45(5): 975-982.
Abstract
目的 随着可再生能源电网占比逐年增加,电网的波动性和不确定性显著提升,给配电网的安全运行带来挑战。针对高比例新能源电网分布式配网重构问题,提出一种在线滚动优化框架方法。 方法 通过分布式共识协议获取网络拓扑和节点运行信息,在N-1和N-2线路故障状态下自动重构,实现配电网无额外外部触发信号情况下自动恢复正常运行,保证电网经济运行。同时采用滚动优化方法处理高比例可再生能源所导致的电网波动问题,并利用生成对抗网络(generative adversarial network,GAN)技术生成新数据,结合历史数据实现电网运行数据高精度预测。 结果 所提方法在正常状态、单点故障和两点故障3种情况下,均能实现电网的自动经济运行优化和自愈修复。 结论 与鲁棒规划和随机规划等方法相比,所提出方法可提升电网预测精度。
WU Renbo, HUANG Yijun. Research on reconfiguration strategy of distributed distribution network with self-healing performance under high-proportion renewable energy access[J]. Power Generation Technology, 2024, 45(5): 975-982.

Objectives As the proportion of renewable energy in power grids increases year by year, the volatility and uncertainty of the grid are significantly heightened, posing challenges to the safe operation of distribution networks. To address the issue of distributed network reconfiguration in high-proportion renewable energy grids, this paper proposed an online rolling optimization framework. Methods The framework utilized a distributed consensus protocol to obtain network topology and node operation information. It can enable automatic reconfiguration in the event of N-1 and N-2 line failures, allowing the distribution network to automatically restore normal operation without the need for additional external triggering signals, thus ensuring economic operation of the grid. Additionally, a rolling optimization method was employed to handle grid fluctuations caused by the high proportion of renewable energy, and generative adversarial network (GAN) technology was used to generate new data, which combined with historical data. It can help to achieve high-precision forecasting of grid operation data. Results The proposed method can achieve automatic economic optimization and self-healing in normal, single-point failure, and two-point failure scenarios. Conclusions This method provides an effective solution for ensuring the safe operation of distributed networks in high-proportion renewable energy grids.

[4]
董福贵, 孟子航, 郗来昊, 等. 面向薄弱配电网的农村多能互补系统储能协同优化配置[J]. 电力工程技术, 2024, 43(5): 13-26.
DONG Fugui, MENG Zihang, CHI Laihao, et al. Coordinated optimal configuration of energy storage in rural multi-energy complementary system for weak distribution networks[J]. Electric Power Engineering Technology, 2024, 43(5): 13-26.
[5]
刘媛媛, 陈元榉, 蔡泽祥, 等. 考虑资源弹性配置的配电网保护控制终端协同任务分配方法[J]. 电力工程技术, 2024, 43(5): 100-111.
LIU Yuanyuan, CHEN Yuanju, CAI Zexiang, et al. Collaborative task allocation method for protection and control intelligent terminal in distribution networks considering elastic allocation of resources[J]. Electric Power Engineering Technology, 2024, 43(5): 100-111.
[6]
BESSANI M, MASSIGNAN J A D, FANUCCHI R Z, et al. Probabilistic assessment of power distribution systems resilience under extreme weather[J]. IEEE Systems Journal, 2019, 13(2): 1747-1756.
[7]
史明明, 刘瑞煌, 张宸宇, 等. 考虑输电网与柔性互联配电网交互影响的可靠性评估方法[J]. 电力工程技术, 2024, 43(4): 77-87.
SHI Mingming, LIU Ruihuang, ZHANG Chenyu, et al. Analytical evaluation method of reliability considering interaction between transmission network and flexible interconnected distribution network[J]. Electric Power Engineering Technology, 2024, 43(4): 77-87.
[8]
王安琪, 才志远, 慕小斌, 等. 分区互联配电网异步孤岛模式切换策略研究[J]. 电网与清洁能源, 2024, 40(5): 59-69.
WANG Anqi, CAI Zhiyuan, MU Xiaobin, et al. Research on the switching strategy for the asynchronous island mode of segmented interconnected distribution networks[J]. Power System and Clean Energy, 2024, 40(5): 59-69.
[9]
施聚辉, 黄晓燕, 曹智博, 等. 基于馈线故障预测的配电网抢修驻点优化选址[J]. 浙江电力, 2023, 42(7): 86-93.
SHI Juhui, HUANG Xiaoyan, CAO Zhibo, et al. Optimal location of stationing points for distribution network repair based on feeder fault prediction[J]. Zhejiang Electric Power, 2023, 42(7): 86-93.
[10]
LIU X F, YAN Y Q, CHEN Y, et al. Fast risk assessment of distribution grid with iterative inference on probabilistic graph[J]. Energy Reports, 2022, 8: 810-817.
[11]
DENG C, LIU Y B, TAN Y Y, et al. The power system risk assessment under rainfall weather and subsequent geological disasters[C]//2016 China International Conference on Electricity Distribution (CICED). IEEE, 2016: 1-5.
[12]
ALVEHAG K, SODER L. A reliability model for distribution systems incorporating seasonal variations in severe weather[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 910-919.
[13]
LI G F, ZHANG P, LUH P B, et al. Risk analysis for distribution systems in the northeast U.S. under wind storms[J]. IEEE Transactions on Power Systems, 2014, 29(2): 889-898.
[14]
MA S S, CHEN B K, WANG Z Y. Resilience enhancement strategy for distribution systems under extreme weather events[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1442-1451.
[15]
KINNEY R, CRUCITTI P, ALBERT R, et al. Modeling cascading failures in the North American power grid[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2005, 46(1): 101-107.
[16]
马静, 王希, 王增平. 基于线路运行介数的过负荷脆弱性评估[J]. 电网技术, 2012, 36(6): 47-50.
MA Jing, WANG Xi, WANG Zengping. Operation betweenness based assessment on overload vulnerability[J]. Power System Technology, 2012, 36(6): 47-50.
[17]
ARIANOS S, BOMPARD E, CARBONE A, et al. Power grid vulnerability: a complex network approach[J]. Chaos, 2009, 19(1): 013119.
Power grids exhibit patterns of reaction to outages similar to complex networks. Blackout sequences follow power laws, as complex systems operating near a critical point. Here, the tolerance of electric power grids to both accidental and malicious outages is analyzed in the framework of complex network theory. In particular, the quantity known as efficiency is modified by introducing a new concept of distance between nodes. As a result, a new parameter called net-ability is proposed to evaluate the performance of power grids. A comparison between efficiency and net-ability is provided by estimating the vulnerability of sample networks, in terms of both the metrics.
[18]
徐林, 王秀丽, 王锡凡. 电气介数及其在电力系统关键线路识别中的应用[J]. 中国电机工程学报, 2010, 30(1): 33-39.
XU Lin, WANG Xiuli, WANG Xifan. Electric betweenness and its application in vulnerable line identification in power system[J]. Proceedings of the CSEE, 2010, 30(1): 33-39.
[19]
魏震波, 刘俊勇, 朱国俊, 等. 基于可靠性加权拓扑模型下的电网脆弱性评估模型[J]. 电工技术学报, 2010, 25(8): 131-137.
WEI Zhenbo, LIU Junyong, ZHU Guojun, et al. Vulnerability evaluation model to power grid based on reliability-parameter-weighted topological model[J]. Transactions of China Electrotechnical Society, 2010, 25(8): 131-137.
[20]
靳冰洁, 张步涵, 姚建国, 等. 基于信息熵的大型电力系统元件脆弱性评估[J]. 电力系统自动化, 2015, 39(5): 61-68.
JIN Bingjie, ZHANG Buhan, YAO Jianguo, et al. Large-scale power system components vulnerability assessment based on entropy[J]. Automation of Electric Power Systems, 2015, 39(5): 61-68.
[21]
梁振锋, 闫俊杰, 李江锋, 等. 极端暴雨灾害下城市配电网风险评估方法[J]. 电网技术, 2023, 47(10): 4180-4190.
LIANG Zhenfeng, YAN Junjie, LI Jiangfeng, et al. Risk assessment of urban distribution network under extreme rainstorm disasters[J]. Power System Technology, 2023, 47(10): 4180-4190.
[22]
戴有学, 王振华, 戴临栋, 等. 芝加哥雨型法在短历时暴雨雨型设计中的应用[J]. 干旱气象, 2017, 35(6): 1061-1069.
Abstract
基于山西临汾国家基本气象站1981—2013年逐日雨量资料,对临汾市城区暴雨强度公式修订的基础上,采用芝加哥雨型法,对临汾市城区短历时暴雨雨型设计进行分析研究。结果表明:1981—2013年山西临汾短历时最大降水量年际变化较大,且随着降水历时的延长,年最大降水量极值有增大趋势;年最强降水比较集中,多出现在7月上旬到8月中旬,且在午后出现次数较多。除历时30 min和180 min外,临汾城区短历时暴雨雨峰位置略偏前,短历时强降雨较为集中。瞬时雨强呈先增后减的单峰型分布,各历时的瞬时雨强变化趋势以及分布型基本一致,只是在时间分配上稍有差别,且雨强随着重现期增大而增大。当重现期相同时,雨峰处降雨强度随着历时的延长整体呈现减小、增大、再减小的波动趋势,但峰值雨强差异较小。
DAI Youxue, WANG Zhenhua, DAI Lindong, et al. Application of Chicago hyetograph method in design of short duration rainstorm pattern[J]. Journal of Arid Meteorology, 2017, 35(6): 1061-1069.
[23]
闫俊杰. 极端暴雨灾害下城市配电网风险评估及韧性提升研究[D]. 西安: 西安理工大学, 2024.
YAN Junjie. Study on risk assessment and resilience improvement of urban distribution network under extreme rainstorm disaster[D]. Xi’an: Xi’an University of Technology, 2024.
[24]
王子午, 徐泽植. 常用供配电设备选型手册-第四分册-高压成套开关设备[M]. 北京: 煤炭工业出版社, 2006.
[25]
苏伯尼, 黄弘, 张楠. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 2015, 55(6): 684-690.
Abstract
该文建立了一套针对城市暴雨内涝灾害的定量风险评估方法。通过二维水力学模型模拟积水的时空分布, 并采用基于国内实地调查获得的脆弱性曲线估算内涝灾害损失。以福建省龙岩市新罗区为例进行了内涝风险评估, 模拟了该地区不同降雨情景下的内涝时空分布和灾害损失情况。结果显示:持续时间越长、重现期越长的暴雨导致的积水和经济损失越严重, 但不同的暴雨导致的积水区域在很大程度上是一致的。通过不同雨水井分布情况下经济损失总量的估算, 分析了雨水井对降低城市暴雨内涝风险的作用。结果表明:雨水井可以有效降低内涝风险, 但应对短时强降雨的效果有限。
SU Boni, HUANG Hong, ZHANG Nan. Dynamic urban waterlogging risk assessment method based on scenario simulations[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(6): 684-690.
[26]
王建学, 张耀, 吴思, 等. 大规模冰灾对输电系统可靠性的影响分析[J]. 中国电机工程学报, 2011, 31(28): 49-56.
WANG Jianxue, ZHANG Yao, WU Si, et al. Influence of large-scale ice disaster on transmission system reliability[J]. Proceedings of the CSEE, 2011, 31(28): 49-56.
[27]
晏鸣宇, 周志宇, 文劲宇, 等. 基于短期覆冰预测的电网覆冰灾害风险评估方法[J]. 电力系统自动化, 2016, 40(21): 168-175.
YAN Mingyu, ZHOU Zhiyu, WEN Jinyu, et al. Assessment method for power grid icing risk based on short-term icing forecasting[J]. Automation of Electric Power Systems, 2016, 40(21): 168-175.
[28]
kV-750 kV架空输电线路设计规范: GB 50545—2010[S]. 北京: 中国计划出版社, 2010.
110 kV-750 kV overhead transmission line: GB 50545—2010[S]. Beijing: China Planning Press, 2010.
[29]
汤智谦. 恶劣天气下架空输电线路荷载风险建模及预测[D]. 镇江: 江苏大学, 2018.
TANG Zhiqian. Modeling and prediction of load risks for overhead transmission lines under severe weather conditions[D]. Zhenjiang: Jiangsu University, 2018.
[30]
姚文艺, 陈国祥. 雨滴降落速度及终速公式[J]. 河海大学学报, 1993, 21(3): 21-27.
YAO Wenyi, CHEN Guoxiang. Calculation formula of rain drop fall velocity[J]. Journal of Hohai University (Natural Sciences), 1993, 21(3): 21-27.
[31]
于童. 输电塔线路的覆冰厚度及风冰荷载风险预测模型研究[D]. 昆明: 昆明理工大学, 2022.
YU Tong. Research on prediction models for ice thickness and wind-ice load risks of transmission tower lines[D]. Kunming: Kunming University of Science and Technology, 2022.
[32]
CHEN J L, CHEN W J, HUANG G R. Assessing urban pluvial flood resilience based on a novel grid-based quantification method that considers human risk perceptions[J]. Journal of Hydrology, 2021, 601: 126601.
[33]
中华人民共和国住房和城乡建设部. 城市用地分类与规划建设用地标准: GB 50137—2011[S]. 北京: 中国建筑工业出版社, 2011.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for classification of urban land use and planning standards of development land: GB 50137—2011[S]. Beijing: China Architecture Building Press, 2011.
[34]
王卓唯. 土地增值视角下城市新区开发效益研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
WANG Zhuowei. Research on the economic benefits of new urban area development based on land value-added theory[D]. Harbin: Harbin Institute of Technology, 2019.
[35]
孙喆. 高密度城区形态要素对热环境的影响作用: 以北京市五环内区域为例[J]. 生态环境学报, 2020, 29(10): 2020-2027.
Abstract
可下载PDF全文。
SUN Zhe. Impact of urban morphology factors on thermal environment in high density urban areas: a case of Beijing within 5th ring road[J]. Ecology and Environmental Sciences, 2020, 29(10): 2020-2027.

Funding

the National Natural Science Foundation of China(52307094)
PDF(18171 KB)

Accesses

Citation

Detail

Sections
Recommended

/