Analysis of Information-Physical Coordinated Attack Paths Based on Vulnerability of Critical Nodes in Cyber-Physical Power System

LIU Wei, LI Ke, WEI Xingshen, WANG Qi

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (12) : 96-106.

PDF(2706 KB)
PDF(2706 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (12) : 96-106. DOI: 10.12204/j.issn.1000-7229.2025.12.009

Analysis of Information-Physical Coordinated Attack Paths Based on Vulnerability of Critical Nodes in Cyber-Physical Power System

Author information +
History +

Abstract

[Objective] Traditional power systems have evolved into more efficient and controllable cyber-physical systems (CPS) with the integration of advanced digital information technology and power physical systems. However,this also increases the risk of cyber-physical collaborative attacks. [Methods] This study analyzes the sources of physical system security incidents caused by information system security threats,categorizes the types of cyber-physical collaborative attacks,and establishes two typical attack scenarios. A simplified single-sided network structure of the power CPS was modeled based on complex network theory and energy-information flows. A three-layer cyber-physical power system network node one-to-one dependency framework was built using the correlation matrix theory. The evolution model of cascading failures in cyber-physical power system nodes was proposed,and a weighted comprehensive centrality index was designed to assess the vulnerability of key nodes. [Results] By simulating different cyber-physical collaborative attack strategies,the node survival rate performance under continuous attacks or failures is analyzed. The accuracy of this method in identifying cyber-physical attack paths is validated. [Conclusions] This study provides a technical reference for the security risk analysis of critical nodes and stable operation control in practical power systems.

Key words

cyber physical system (CPS) / cyber-attack / cyber-physical security / key node identification / vulnerability assessment

Cite this article

Download Citations
LIU Wei , LI Ke , WEI Xingshen , et al. Analysis of Information-Physical Coordinated Attack Paths Based on Vulnerability of Critical Nodes in Cyber-Physical Power System[J]. Electric Power Construction. 2025, 46(12): 96-106 https://doi.org/10.12204/j.issn.1000-7229.2025.12.009

References

[1]
龚立, 王先培, 田猛, 等. 电力信息物理系统韧性的概念与提升策略研究进展[J]. 电力系统保护与控制, 2023, 51(14): 169-187.
GONG Li, WANG Xianpei, TIAN Meng, et al. Concepts and research progress on enhancement strategies for cyber physical power system resilience[J]. Power System Protection and Control, 2023, 51(14): 169-187.
[2]
王琦, 李梦雅, 汤奕, 等. 电力信息物理系统网络攻击与防御研究综述(一)建模与评估[J]. 电力系统自动化, 2019, 43(9): 9-21.
WANG Qi, LI Mengya, TANG Yi, et al. A review on research of cyber-attacks and defense in cyber physical power systems part one modelling and evaluation[J]. Automation of Electric Power Systems, 2019, 43(9): 9-21.
[3]
张晶晶, 吴佳瑜, 齐先军, 等. 基于网络依存关系的CPPS连锁故障分析及风险评估[J]. 电力系统保护与控制, 2023, 51(5): 164-171.
ZHANG Jingjing, WU Jiayu, QI Xianjun, et al. Cascading failure analysis and risk assessment of CPPS based on network dependency[J]. Power System Protection and Control, 2023, 51(5): 164-171.
[4]
李妍莎, 蔡晔, 曹一家, 等. 面向联合检修的电力信息物理系统输电线路脆弱相关性辨识[J]. 电力系统保护与控制, 2022, 50(24): 120-128.
LI Yansha, CAI Ye, CAO Yijia, et al. Vulnerable correlation identification of a transmission line in the power cyber physical system for federated maintenance[J]. Power System Protection and Control, 2022, 50(24): 120-128.
[5]
胡怡霜, 丁一, 朱忆宁, 等. 基于状态依存矩阵的电力信息物理系统风险传播分析[J]. 电力系统自动化, 2021, 45(15): 1-10.
HU Yishuang, DING Yi, ZHU Yining, et al. Risk propagation analysis of cyber-physical power system based on state dependence matrix[J]. Automation of Electric Power Systems, 2021, 45(15): 1-10.
[6]
王宇飞, 邱健, 李俊娥. 考虑攻击损益的电网CPS场站级跨空间连锁故障早期预警方法[J]. 中国电力, 2020, 53(1): 92-99.
WANG Yufei, QIU Jian, LI June. A station level early warning method of cascading failures across space based on attack gain and cost principle in GCPS[J]. Electric Power, 2020, 53(1): 92-99.
[7]
LIANG G Q, WELLER S R, ZHAO J H, et al. The 2015 Ukraine blackout: implications for false data injection attacks[J]. IEEE Transactions on Power Systems, 2017, 32(4): 3317-3318.
[8]
张玥, 谢光龙, 张全, 等. 美国得州2·15大停电事故分析及对中国电力发展的启示[J]. 中国电力, 2021, 54(4): 192-198, 206.
ZHANG Yue, XIE Guanglong, ZHANG Quan, et al. Analysis of 2·15 power outage in Texas and its implications for the power sector of China[J]. Electric Power, 2021, 54(4): 192-198, 206.
[9]
杨挺, 许哲铭, 赵英杰, 等. 数字化新型电力系统攻击与防御方法研究综述[J]. 电力系统自动化, 2024, 48(6): 112-126.
YANG Ting, XU Zheming, ZHAO Yingjie, et al. Review on research of attack and defense methods for digitalized new power system[J]. Automation of Electric Power Systems, 2024, 48(6): 112-126.
[10]
BO X Y, QU Z Y, WANG L, et al. Active defense research against false data injection attacks of power CPS based on data-driven algorithms[J]. Energies, 2022, 15(19): 7432.
The terminal equipment interconnection and the network communication environment are complex in power cyber–physical systems (CPS), and the frequent interaction between the information and energy flows aggravates the risk of false data injection attacks (FDIAs) in the power grid. This paper proposes an active defense framework against FDIAs of power CPS based on data-driven algorithms in order to ensure that FDIAs can be efficiently detected and processed in real-time during power grid operation. First, the data transmission scenario and false data injection forms of power CPS were analyzed, and the FDIA mathematical model was expounded. Then, from a data-driven perspective, the algorithm improvement and process design were carried out for the three key links of data enhancement, attack detection, and data reconstruction. Finally, an active defense framework against FDIAs was proposed. The example analysis verified that the method proposed in this paper could effectively detect FDIAs and perform data reconstruction, providing a new idea for the active defense against FDIAs of power CPS.
[11]
HU S L, GE X H, CHEN X L, et al. Resilient load frequency control of islanded AC microgrids under concurrent false data injection and denial-of-service attacks[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 690-700.
[12]
陈武晖, 陈文淦, 薛安成. 面向协同信息攻击的物理电力系统安全风险评估与防御资源分配[J]. 电网技术, 2019, 43(7): 2353-2360.
CHEN Wuhui, CHEN Wengan, XUE Ancheng. Security risk assessment and defense resource allocation of power system under synergetic cyber attacks[J]. Power System Technology, 2019, 43(7): 2353-2360.
[13]
张殷, 肖先勇, 李长松. 基于攻击者视角的电力信息物理融合系统脆弱性分析[J]. 电力自动化设备, 2018, 38(10): 81-88.
ZHANG Yin, XIAO Xianyong, LI Changsong. Vulnerability analysis of cyber physical power system from attacker’s perspective[J]. Electric Power Automation Equipment, 2018, 38(10): 81-88.
[14]
王涛, 孙聪, 顾雪平, 等. 电力通信耦合网络建模及其脆弱性分析[J]. 中国电机工程学报, 2018, 38(12): 3556-3567.
WANG Tao, SUN Cong, GU Xueping, et al. Modeling and vulnerability analysis of electric power communication coupled network[J]. Proceedings of the CSEE, 2018, 38(12): 3556-3567.
[15]
遆宝中, 李庚银, 王剑晓, 等. 计及监测与控制功能的电力信息物理系统关键输电线路辨识方法[J]. 中国电机工程学报, 2022, 42(7): 2556-2566.
TI Baozhong, LI Gengyin, WANG Jianxiao, et al. Identification of critical transmission lines in cyber-physical power system considering monitoring function and control function[J]. Proceedings of the CSEE, 2022, 42(7): 2556-2566.
[16]
张赟宁, 涂迅, 张磊, 等. 基于攻击者视角的综合能源系统网络攻击策略[J/OL]. 电网技术, 2024: 1-12. (2024-09-05) [2024-10-02]. https://doi.org/10.13335/j.1000-3673.pst.2024.1444.
ZHANG Yunning, TU Xun, ZHANG Lei, et al. Network attack strategy of integrated energy system based on attacker’s perspective[J/OL]. Power System Technology, 2024: 1-12. (2024-09-05) [2024-10-02]. https://doi.org/10.13335/j.1000-3673.pst.2024.1444.
[17]
席磊, 彭典名, 曹伟, 等. 数据驱动算法的电力信息物理系统FDIA定位检测[J/OL]. 中国电机工程学报, 2024: 1-12. (2024-08-26)[2024-10-02]. https://doi.org/10.13334/j.0258-8013.pcsee.240412.
XI Lei, PENG Dianming, CAO Wei, et al. FDIA location detection of power cyber-physical systems based on data-driven algorithm[J/OL]. Proceedings of the CSEE, 2024: 1-12. (2024-08-26)[2024-10-02]. https://doi.org/10.13334/j.0258-8013.pcsee.240412.
[18]
汤奕, 陈倩, 李梦雅, 等. 电力信息物理融合系统环境中的网络攻击研究综述[J]. 电力系统自动化, 2016, 40(17): 59-69.
TANG Yi, CHEN Qian, LI Mengya, et al. Overview on cyber-attacks against cyber physical power system[J]. Automation of Electric Power Systems, 2016, 40(17): 59-69.
[19]
LI B B, XIAO G X, LU R X, et al. On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-FACTS devices[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 854-864.
[20]
庞清乐, 韩松易, 周泰, 等. 基于ASRUKF和IMC算法的电力信息物理系统虚假数据注入攻击检测[J]. 智慧电力, 2024, 52(7): 111-118.
PANG Qingle, HAN Songyi, ZHOU Tai, et al. False data injection attack detection of cyber-physical power system based on ASRUKF and IMC algorithms[J]. Smart Power, 2024, 52(7): 111-118.
[21]
巨云涛, 于燕玲, 张紫枫, 等. 计及坏数据辨识的微网群三相分布式状态估计方法[J]. 高电压技术, 2022, 48(4): 1251-1263.
JU Yuntao, YU Yanling, ZHANG Zifeng, et al. Three-phase distributed state estimation method of microgrid group considering bad data identification[J]. High Voltage Engineering, 2022, 48(4): 1251-1263.
[22]
QIAO S W, LIU X H, LIANG Y R, et al. Event-triggered sliding mode load frequency control of multiarea power systems under periodic denial-of-service attacks[J]. IEEE Systems Journal, 2023, 17(2): 2803-2814.
[23]
刘治开, 张原, 刘享秀. 电力系统防御DoS网络攻击的机制研究[J]. 信息与电脑(理论版), 2024, 36(2): 209-211.
LIU Zhikai, ZHANG Yuan, LIU Xiangxiu. Research on defense mechanism of power system against DoS network attack[J]. Information & Computer, 2024, 36(2): 209-211.
[24]
林峰, 梅勇, 朱益华, 等. 网络攻击对电力系统典型场景全过程影响综述[J]. 南方电网技术, 2023, 17(11): 61-75.
LIN Feng, MEI Yong, ZHU Yihua, et al. Overview of the entire process influence of cyber attack on typical scenarios of power systems[J]. Southern Power System Technology, 2023, 17(11): 61-75.
[25]
张汪洋, 樊艳芳, 侯俊杰, 等. 基于集成深度神经网络的配电网分布式状态估计方法[J]. 电力系统保护与控制, 2024, 52(3): 128-140.
ZHANG Wangyang, FAN Yanfang, HOU Junjie, et al. Distribution network distributed state estimation method based on an integrated deep neural network[J]. Power System Protection and Control, 2024, 52(3): 128-140.
[26]
乐健, 郎红科, 谭甜源, 等. 新型配电系统分布式经济调度信息安全问题研究综述[J]. 电力系统自动化, 2024, 48(12): 177-191.
LE Jian, LANG Hongke, TAN Tianyuan, et al. Review of research on information security problems in distributed economic dispatch for new distribution system[J]. Automation of Electric Power Systems, 2024, 48(12): 177-191.
[27]
李希喆, 辛培哲, 江璟. 计及能量流与信息流的电力信息物理系统关键节点辨识[J/OL]. 高压电器, 2024: 1-13. (2024-01-08)[2024-08-10]. http://kns.cnki.net/kcms/detail/61.1127.TM.20240105.1659.002.html.
LI Xizhe, XIN Peizhe, JIANG Jing. Identification of key nodes in power cyber-physical systems considering energy flow and information flow[J/OL]. High Voltage Apparatus, 2024: 1-13. (2024-01-08) [2024-08-10]. http://kns.cnki.net/kcms/detail/61.1127.TM.20240105.1659.002.html.
[28]
王超超, 董晓明, 孙华, 等. 考虑多层耦合特性的电力信息物理系统建模方法[J]. 电力系统自动化, 2021, 45(3): 83-91.
WANG Chaochao, DONG Xiaoming, SUN Hua, et al. Modeling method of power cyber-physical system considering multi-layer coupling characteristics[J]. Automation of Electric Power Systems, 2021, 45(3): 83-91.
[29]
薛禹胜, 李满礼, 罗剑波, 等. 基于关联特性矩阵的电网信息物理系统耦合建模方法[J]. 电力系统自动化, 2018, 42(2): 11-19.
XUE Yusheng, LI Manli, LUO Jianbo, et al. Modeling method for coupling relations in cyber physical power systems based on correlation characteristic matrix[J]. Automation of Electric Power Systems, 2018, 42(2): 11-19.
[30]
叶夏明, 文福拴, 尚金成, 等. 电力系统中信息物理安全风险传播机制[J]. 电网技术, 2015, 39(11): 3072-3079.
YE Xiaming, WEN Fushuan, SHANG Jincheng, et al. Propagation mechanism of cyber physical security risks in power systems[J]. Power System Technology, 2015, 39(11): 3072-3079.
[31]
杨挺, 李浩, 赵宇明, 等. 电力信息物理系统故障通信恢复策略[J]. 电网技术, 2025, 49(1): 381-389.
YANG Ting, LI Hao, ZHAO Yuming, et al. Fault communication recovery strategy of power cyber-physical system[J]. Power System Technology, 2025, 49(1): 381-389.
[32]
吴润泽, 张保健, 唐良瑞. 双网耦合模型中基于级联失效的节点重要度评估[J]. 电网技术, 2015, 39(4): 1053-1058.
WU Runze, ZHANG Baojian, TANG Liangrui. A cascading failure based nodal importance evaluation method applied in dual network coupling model[J]. Power System Technology, 2015, 39(4): 1053-1058.
[33]
连祥龙, 张文浩, 钱瞳, 等. 考虑信息节点失效的电力信息物理系统脆弱性评估方法[J]. 全球能源互联网, 2019, 2(6): 523-529.
LIAN Xianglong, ZHANG Wenhao, QIAN Tong, et al. Vulnerability assessment of cyber physical power system considering cyber nodes failure[J]. Journal of Global Energy Interconnection, 2019, 2(6): 523-529.
[34]
张殷, 肖先勇, 李长松. 考虑信息物理交互的电力-信息耦合网络脆弱性分析与改善策略研究[J]. 电网技术, 2018, 42(10): 3136-3147.
ZHANG Yin, XIAO Xianyong, LI Changsong. Vulnerability analysis and improvement strategy of power-information coupled networks considering cyber physical interaction[J]. Power System Technology, 2018, 42(10): 3136-3147.
[35]
谭阳红, 罗研彬, 谭鑫, 等. 电力信息物理融合系统结构脆弱性分析[J]. 湖南大学学报(自然科学版), 2018, 45(8): 91-98.
TAN Yanghong, LUO Yanbin, TAN Xin, et al. Analysis on structural vulnerabilities of cyber physical power systems[J]. Journal of Hunan University (Natural Sciences), 2018, 45(8): 91-98.

Funding

Science and Technology Project of State Grid Corporation of china(5108-202440040A-1-1-ZN)
PDF(2706 KB)

Accesses

Citation

Detail

Sections
Recommended

/