Multi-Time-Scale Coordinated Scheduling of Micro-Turbine and Air-Conditioning Building Clusters in Campus Microgrid Considering Load Curtailment Uncertainty

HE Huashen, WANG Yuxi, SUI Quan, WENG Hanli, YANG Jiahui, YAO Linwei

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (12) : 131-142.

PDF(2018 KB)
PDF(2018 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (12) : 131-142. DOI: 10.12204/j.issn.1000-7229.2025.12.012

Multi-Time-Scale Coordinated Scheduling of Micro-Turbine and Air-Conditioning Building Clusters in Campus Microgrid Considering Load Curtailment Uncertainty

Author information +
History +

Abstract

[Objective] To address high operational costs and non-smooth power exchange with the grid in existing campus microgrids that rely solely on power sources or air-conditioning loads to mitigate fluctuations,we propose a multi-timescale coordinated scheduling strategy for micro-turbines (MT) and air-conditioning building clusters in campus microgrids considering uncertainties in grid curtailment. [Methods] First,we established a virtual energy storage model for air-conditioned buildings by quantitatively analyzing the flexible energy characteristics of variable-frequency air conditioners. Combined with the relationship between power generation and energy consumption for MTs,we propose a short-timescale efficiency-coordinated control method for MTs and variable-frequency air conditioners to adaptively mitigate power fluctuations. Subsequently,a long-timescale coordinated operation model between MT systems and air-conditioned buildings was constructed based on supply and demand relationships relating to the microgrid. Furthermore,robust optimization methods were implemented with stochastic scenario exploration to characterize uncertainties in grid curtailment,renewable generation,and load demand. Overall,we aimed to design a flexible multi-timescale scheduling strategy compatible with grid-connected and islanded modes. Finally,we linearized the model into a mixed-integer linear programming (MILP) problem. [Results] Simulation results demonstrate that the system strictly followed the efficiency-coordinated control method to dynamically coordinate power allocation between the MT and virtual energy storage when the power provided by the microgrid fluctuated. The proposed strategy reduced the total system costs by 10.1% in the grid-connected mode and 5.0% in islanded mode. It mitigated risks of systemic collapse effectively while enhancing the reliability and economic performance of the system. [Conclusion] The proposed strategy takes advantage of the coordinated scheduling potential of MT and variable-frequency air-conditioning clusters to adapt flexibly to grid-connected and islanded scenarios. It significantly improves the economics of microgrid systems,and provides an efficient scheduling solution for high-penetration renewable energy integration.

Key words

variable frequency air conditioning cluster / virtual energy storage / collaborative scheduling / grid-connection and island modes

Cite this article

Download Citations
HE Huashen , WANG Yuxi , SUI Quan , et al . Multi-Time-Scale Coordinated Scheduling of Micro-Turbine and Air-Conditioning Building Clusters in Campus Microgrid Considering Load Curtailment Uncertainty[J]. Electric Power Construction. 2025, 46(12): 131-142 https://doi.org/10.12204/j.issn.1000-7229.2025.12.012

References

[1]
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2]
丁长新, 王翔, 赵波, 等. 基于动态组网的园区微电网群运行优化[J]. 电网与清洁能源, 2024, 40(5): 1-9.
DING Changxin, WANG Xiang, ZHAO Bo, et al. Operation optimization for the industrial park microgrid cluster based on dynamic networking[J]. Power System and Clean Energy, 2024, 40(5): 1-9.
[3]
许雨玲, 王磊, 江伟建, 等. 考虑源荷互动的微电网容量配置双层优化模型[J]. 浙江电力, 2024, 43(4): 29-39.
XU Yuling, WANG Lei, JIANG Weijian, et al. A dual-layer optimization model for capacity configuration in microgrids considering source-load interactions[J]. Zhejiang Electric Power, 2024, 43(4): 29-39.
[4]
马立红, 梁亚峰, 程西, 等. 计及构网型储能稳定拓展的微电网群优化运行[J]. 电力工程技术, 2024, 43(6): 214-222.
MA Lihong, LIANG Yafeng, CHENG Xi, et al. Optimal operation of microgrids considering stabilized expansion of grid-forming energy storage[J]. Electric Power Engineering Technology, 2024, 43(6): 214-222.
[5]
李洪美, 李香凡, 林志芳, 等. 计及车网互动的热电联供微电网优化调度[J]. 电网与清洁能源, 2024, 40(9): 63-73.
LI Hongmei, LI Xiangfan, LIN Zhifang, et al. Optimized scheduling of the combined heat and power microgrid considering vehicle-to-grid interaction[J]. Power System and Clean Energy, 2024, 40(9): 63-73.
[6]
夏鑫, 钟浩, 张磊, 等. 计及动态电价的电动汽车参与微电网调度双层优化策略[J]. 电力工程技术, 2024, 43(3): 140-150.
XIA Xin, ZHONG Hao, ZHANG Lei, et al. A two-layer optimization strategy for electric vehicles participating in microgrid scheduling considering dynamic electricity prices[J]. Electric Power Engineering Technology, 2024, 43(3): 140-150.
[7]
苏建军, 郭跃进, 刘萌, 等. 紧急切负荷措施的温控负荷控制策略及概率模型[J]. 电网技术, 2018, 42(3): 911-918.
SU Jianjun, GUO Yuejin, LIU Meng, et al. Strategy and probability model for thermostatically controlled loads in emergency load shedding system[J]. Power System Technology, 2018, 42(3): 911-918.
[8]
王怡岚, 童亦斌, 黄梅, 等. 基于需求侧响应的空调负荷虚拟储能模型研究[J]. 电网技术, 2017, 41(2): 394-401.
WANG Yilan, TONG Yibin, HUANG Mei, et al. Research on virtual energy storage model of air conditioning loads based on demand response[J]. Power System Technology, 2017, 41(2): 394-401.
[9]
艾欣, 赵阅群, 周树鹏. 空调负荷直接负荷控制虚拟储能特性研究[J]. 中国电机工程学报, 2016, 36(6): 1596-1603.
AI Xin, ZHAO Yuequn, ZHOU Shupeng. Study on virtual energy storage features of air conditioning load direct load control[J]. Proceedings of the CSEE, 2016, 36(6): 1596-1603.
[10]
WU X Q, WU R J, WANG D X, et al. Coordinated air conditioning resources scheduling with high photovoltaic penetrations[C]//2018 International Conference on Power System Technology (POWERCON). IEEE, 2018: 2242-2248.
[11]
WANG D X, WU R J, LI X C, et al. Two-stage optimal scheduling of air conditioning resources with high photovoltaic penetrations[J]. Journal of Cleaner Production, 2019, 241: 118407.
[12]
高赐威, 张良杰, 杨晓梅. 中央空调负荷聚合及平抑风电出力波动研究[J]. 中国电机工程学报, 2017, 37(11): 3184-3191, 3373.
GAO Ciwei, ZHANG Liangjie, YANG Xiaomei. Research on load aggregation of central air conditioning and its participation in the operation of power system[J]. Proceedings of the CSEE, 2017, 37(11): 3184-3191, 3373.
[13]
胡志勇, 郭雪丽, 王爽, 等. 考虑响应意愿的电动汽车群-空调集群需求响应策略研究[J]. 电力系统保护与控制, 2023, 51(15): 109-119.
HU Zhiyong, GUO Xueli, WANG Shuang, et al. Demand response strategy for electric vehicles and air conditioners considering response willingness[J]. Power System Protection and Control, 2023, 51(15): 109-119.
[14]
杨秀, 傅广努, 刘方, 等. 考虑多重因素的空调负荷聚合响应潜力评估及控制策略研究[J]. 电网技术, 2022, 46(2): 699-714.
YANG Xiu, FU Guangnu, LIU Fang, et al. Potential evaluation and control strategy of air conditioning load aggregation response considering multiple factors[J]. Power System Technology, 2022, 46(2): 699-714.
[15]
乔锐勋, 王军华, 韦道明, 等. 计及后备储能及空调调度潜力的5G基站多时间尺度优化方法[J]. 电力系统自动化, 2023, 47(4): 111-120.
QIAO Ruixun, WANG Junhua, WEI Daoming, et al. Multi-time-scale optimization method for 5G base station considering backup energy storage and air-conditioning scheduling potential[J]. Automation of Electric Power Systems, 2023, 47(4): 111-120.
[16]
吴润基, 王冬骁, 谢昌鸿, 等. 空调负荷参与配电网电压管理的分布式控制方法[J]. 电力系统自动化, 2021, 45(6): 215-222.
WU Runji, WANG Dongxiao, XIE Changhong, et al. Distributed control method for air-conditioning load participating in voltage management of distribution network[J]. Automation of Electric Power Systems, 2021, 45(6): 215-222.
[17]
范德金, 张姝, 王杨, 等. 考虑用户调节行为多样性的空调负荷聚合商日前调度策略[J]. 电力系统保护与控制, 2022, 50(17): 133-142.
FAN Dejin, ZHANG Shu, WANG Yang, et al. Day ahead scheduling strategy for air conditioning load aggregators considering user regulation behavior diversity[J]. Power System Protection and Control, 2022, 50(17): 133-142.
[18]
郭旭歆, 高赐威, 王朝亮, 等. 基于中央空调虚拟储能模型的调峰策略研究[J]. 电力需求侧管理, 2022, 24(4): 42-46.
GUO Xuxin, GAO Ciwei, WANG Chaoliang, et al. Peak adjustment strategy based on central air conditioning virtual energy storage model[J]. Power Demand Side Management, 2022, 24(4): 42-46.
[19]
周星球, 郑凌蔚, 杨兰, 等. 考虑多重不确定性的综合能源系统日前优化调度[J]. 电网技术, 2020, 44(7): 2466-2473.
ZHOU Xingqiu, ZHENG Lingwei, YANG Lan, et al. Day-ahead optimal dispatch of an integrated energy system considering multiple uncertainty[J]. Power System Technology, 2020, 44(7): 2466-2473.
[20]
闫志彬, 李立, 阳鹏, 等. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58(2): 103-110.
YAN Zhibin, LI Li, YANG Peng, et al. Optimal scheduling strategy for microgrid considering the support capabilities of grid forming energy storage[J]. Electric Power, 2025, 58(2): 103-110.
[21]
李超杰, 严宇, 叶宇成, 等. 基于自适应SMPC的风-光-储混合微电网实时优化调度研究[J]. 青海电力, 2024, 43(3): 5-12, 36.
LI Chaojie, YAN Yu, YE Yucheng, et al. Adaptive SMPC-based real-time optimal scheduling of hybrid micro-grid with wind-optical-storage[J]. Qinghai Electric Power, 2024, 43(3): 5-12, 36.
[22]
随权, 林湘宁, 魏繁荣, 等. 一种考虑网络攻击风险的智能微网新型调度策略[J]. 中国电机工程学报, 2021, 41(15): 5179-5189.
SUI Quan, LIN Xiangning, WEI Fanrong, et al. A novel scheduling strategy for smart microgrids considering cyber attack[J]. Proceedings of the CSEE, 2021, 41(15): 5179-5189.
[23]
林顺富, 倪凌凡, 姜恩宇, 等. 计及风电出力不确定性的海上孤岛微电网动态激励优化调度[J]. 电网技术, 2023, 47(6): 2353-2369.
LIN Shunfu, NI Lingfan, JIANG Enyu, et al. Dynamic excitation optimization scheduling of offshore isolated microgrid with uncertainty of wind power[J]. Power System Technology, 2023, 47(6): 2353-2369.
[24]
师旭露, 邢海军, 汪航, 等. 基于机会约束的风光制氢合成氨系统低碳优化调度[J/OL]. 高电压技术, 2025: 1-14. (2025-01-03)[2025-02-20]. https://doi.org/10.13336/j.1003-6520.hve.20241090.
SHI Xulu, XING Haijun, WANG Hang, et al. Low-carbon dispatch of wind and solar power-based hydrogen production and ammonia synthesis system based on chance constraints[J/OL]. High Voltage Engineering, 2025: 1-14. (2025-01-03) [2025-02-20]. https://doi.org/10.13336/j.1003-6520.hve.20241090.
[25]
王皓, 艾芊, 吴俊宏, 等. 基于交替方向乘子法的微电网群双层分布式调度方法[J]. 电网技术, 2018, 42(6): 1718-1727.
WANG Hao, AI Qian, WU Junhong, et al. Bi-level distributed optimization for microgrid clusters based on alternating direction method of multipliers[J]. Power System Technology, 2018, 42(6): 1718-1727.
[26]
张津珲, 王旭, 蒋传文, 等. 计及交通流量不确定性的多网耦合综合能源系统优化调度方法[J]. 电网技术, 2019, 43(9): 3081-3093.
ZHANG Jinhui, WANG Xu, JIANG Chuanwen, et al. Optimal scheduling method of multi-network regional integrated energy system based on traffic flow uncertainty[J]. Power System Technology, 2019, 43(9): 3081-3093.
[27]
马国真, 林毓军, 张泽亚, 等. 计及源荷多重不确定性的综合能源系统鲁棒经济调度方法[J]. 电力系统保护与控制, 2021, 49(20): 43-52.
MA Guozhen, LIN Yujun, ZHANG Zeya, et al. A robust economic dispatch method for an integrated energy system considering multiple uncertainties of source and load[J]. Power System Protection and Control, 2021, 49(20): 43-52.
[28]
殷爽睿, 艾芊, 王大鹏, 等. 考虑空调负荷虚拟储能的产消者鲁棒日前申报策略[J]. 电力系统自动化, 2020, 44(4): 24-34.
YIN Shuangrui, AI Qian, WANG Dapeng, et al. Day-ahead robust bidding strategy for prosumer considering virtual energy storage of air-conditioning load[J]. Automation of Electric Power Systems, 2020, 44(4): 24-34.
[29]
郭方洪, 冯秀荣, 杨淏, 等. 基于数据模型双驱动的新能源微电网分布鲁棒优化调度[J]. 电力系统自动化, 2024, 48(20): 36-47.
GUO Fanghong, FENG Xiurong, YANG Hao, et al. Dual-data-model-driven distributionally robust optimal scheduling of renewable energy microgrid[J]. Automation of Electric Power Systems, 2024, 48(20): 36-47.
[30]
张亚超, 谢仕炜, 朱蜀. 多区域互联电-气耦合系统分散协调分布鲁棒优化调度[J]. 电力系统自动化, 2022, 46(19): 31-42.
ZHANG Yachao, XIE Shiwei, ZHU Shu. Decentralized coordinated distributionally robust optimal scheduling of multi-area interconnected electricity-gas coupling system[J]. Automation of Electric Power Systems, 2022, 46(19): 31-42.
[31]
晋旭东, 孙磊, 丁明, 等. 考虑用户响应不确定性的园区综合能源系统分布鲁棒低碳调度[J]. 电力系统自动化, 2023, 47(16): 10-21.
JIN Xudong, SUN Lei, DING Ming, et al. Distributionally robust low-carbon dispatch of park-level integrated energy system considering uncertainty of customer response[J]. Automation of Electric Power Systems, 2023, 47(16): 10-21.
[32]
姚俊伟, 何奇, 张宇, 等. 考虑风电出力不确定性的微电网两阶段鲁棒优化调度模型[J]. 浙江电力, 2024, 43(11): 106-115.
YAO Junwei, HE Qi, ZHANG Yu, et al. A two-stage robust optimal scheduling model for microgrids accounting for the uncertainties in wind turbine output[J]. Zhejiang Electric Power, 2024, 43(11): 106-115.
[33]
曹彬. 气候与建筑环境对人体热适应性的影响研究[D]. 北京: 清华大学, 2012.
CAO Bin. Study on the influence of climate and building environment on human thermal adaptability[D]. Beijing: Tsinghua University, 2012.
[34]
张勇军, 郝金宝. 考虑用户舒适度补偿的空调负荷优化调度模型[J]. 华南理工大学学报(自然科学版), 2019, 47(3): 1-8.
Abstract
通过对空调负荷这一类需求侧响应资源的调度,可以减轻分布式电源出力波动 对电网运行的不利影响,促进可再生能源的消纳. 本研究首先基于负荷聚合商的运行框 架,分析了负荷聚合商的成本和效益,在负荷聚合商成本的组分中,提出了根据用户舒适 度所确定的需求响应补偿策略; 其次,本研究建立了空调负荷的温度变化模型; 最后提出 了空调负荷优化调度模型,该模型目标函数为空调负荷聚合商总收益最大,并考虑到了空 调温度、风电波动以及聚合商收益约束. 算例仿真结果表明,本研究提出的模型具有良好 的经济效益,并提升了对分布式风电波动的平抑效果
ZHANG Yongjun, HAO Jinbao. Air conditioning load optimization dispatching model considering users' comfort compensation[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(3): 1-8.
[35]
SONG M, GAO C W, YAN H G, et al. Thermal battery modeling of inverter air conditioning for demand response[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 5522-5534.
[36]
高红均, 郭明浩, 刘俊勇, 等. 从四川高温干旱限电事件看新型电力系统保供挑战与应对展望[J]. 中国电机工程学报, 2023, 43(12): 4517-4538.
GAO Hongjun, GUO Minghao, LIU Junyong, et al. Power supply challenges and prospects in new power system from Sichuan electricity curtailment events caused by high-temperature drought weather[J]. Proceedings of the CSEE, 2023, 43(12): 4517-4538.
[37]
PAN G S, GU W, LU Y P, et al. Optimal planning for electricity-hydrogen integrated energy system considering power to hydrogen and heat and seasonal storage[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2662-2676.
[38]
潘帅琪, 魏繁荣, 林湘宁, 等. 光伏建筑一体化社区热电联供调度策略[J]. 电力系统保护与控制, 2022, 50(4): 24-35.
PAN Shuaiqi, WEI Fanrong, LIN Xiangning, et al. Dispatch strategy of heat and power cogeneration in building integrated photovoltaic[J]. Power System Protection and Control, 2022, 50(4): 24-35.
[39]
LIU G D, XU Y, TOMSOVIC K. Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 227-237.
[40]
朱宗耀, 王秀丽, 吴雄, 等. 复合储能参与电能量及辅助服务市场的运行策略[J]. 电力系统自动化, 2023, 47(18): 80-90.
ZHU Zongyao, WANG Xiuli, WU Xiong, et al. Operation strategy for composite energy storage participating in electric energy and ancillary service markets[J]. Automation of Electric Power Systems, 2023, 47(18): 80-90.

Funding

the National Natural Science Foundation of China(52077120)
PDF(2018 KB)

Accesses

Citation

Detail

Sections
Recommended

/