Analysis of Wind and Solar Power Output Characteristics in the Gobi and Desert Areas Based on Multidimensional Dynamic Clustering

YU Yang, GUO Yixuan, LÜ Tingyan, WANG Zhongjing, WANG Fang, WANG Wenguo

Electric Power Construction ›› 2025, Vol. 46 ›› Issue (12) : 170-182.

PDF(3097 KB)
PDF(3097 KB)
Electric Power Construction ›› 2025, Vol. 46 ›› Issue (12) : 170-182. DOI: 10.12204/j.issn.1000-7229.2025.12.015

Analysis of Wind and Solar Power Output Characteristics in the Gobi and Desert Areas Based on Multidimensional Dynamic Clustering

Author information +
History +

Abstract

[Objective] To address the challenges of unclear wind and solar power output characterization,low accuracy of traditional clustering strategies,and poor performance in feature modeling due to the complex environment of the Sandy,Gobi,and Desert (SGD) region,this study proposes a multidimensional dynamic clustering strategy for analyzing regional wind and solar power output characteristics. The aim is to achieve precise clustering and quantitative description of wind and solar resources,providing theoretical support and data foundations for multi-source coordinated dispatch and optimization. [Methods] First,a multidimensional clustering index system is constructed,incorporating similarity,complementarity,and grid integration adaptability. Next,a clustering method based on Bidirectional Agglomerative Hierarchical Clustering (BAHC) is proposed,with Bayesian Optimization (BO) introduced to dynamically adjust index weights,enabling accurate clustering of wind and solar resources in complex environments. Finally,a "model-scenario-indicator" linkage analysis framework is established to quantitatively evaluate output characteristics and adaptability. [Results] Simulations demonstrated that the proposed multidimensional index system comprehensively characterized the wind and solar power output features in the SGD region. The BAHC-based clustering method outperformed traditional algorithms in terms of silhouette coefficient and CH index,substantially enhancing the adaptability and accuracy of clustering results. The kernel density estimation(KDE) model effectively captured the distribution patterns of wind and solar power outputs in most SGD regions,while the Weibull distribution is suitable for auxiliary description of low-output risk clusters. [Conclusions] The proposed multidimensional dynamic clustering strategy significantly enhances the accuracy and adaptability of wind and solar power output characteristic analysis in the SGD region.

Key words

gobi and desert areas / wind and solar power output characteristic analysis / clustering / renewable energy consumption / bidirectional agglomerative hierarchical glustering (BAHC) algorithm

Cite this article

Download Citations
YU Yang , GUO Yixuan , LÜ Tingyan , et al . Analysis of Wind and Solar Power Output Characteristics in the Gobi and Desert Areas Based on Multidimensional Dynamic Clustering[J]. Electric Power Construction. 2025, 46(12): 170-182 https://doi.org/10.12204/j.issn.1000-7229.2025.12.015

References

[1]
吕游, 毛乃新, 秦瑞钧, 等. 考虑风光及负荷不确定性的虚拟电厂低碳经济调度[J]. 太阳能学报, 2024, 45(11): 116-123.
LYU You, MAO Naixin, QIN Ruijun, et al. Low-carbon economic dispatch of virtual power plants considering wind power, photovoltaic and load uncertainty[J]. Acta Energiae Solaris Sinica, 2024, 45(11): 116-123.
[2]
TONG X, ZHAO S Y, CHEN H, et al. Optimal dispatch of a multi-energy complementary system containing energy storage considering the trading of carbon emission and green certificate in China[J]. Energy, 2025, 314: 134215.
[3]
杨海柱, 白亚楠, 李忠文, 等. 基于改进MVO算法的电热气耦合综合能源系统低碳优化调度[J]. 电力建设, 2024, 45(12): 112-123.
YANG Haizhu, BAI Yanan, LI Zhongwen, et al. Low-carbon optimal dispatching of electric-heat-gas coupled integrated energy system based on improved MVO algorithm[J]. Electric Power Construction, 2024, 45(12): 112-123.
[4]
国家发展和改革委员会, 国家能源局. “十四五”可再生能源发展规划[Z]. 北京: 国家发展和改革委员会, 2022.
National Development and Reform Commission, National Energy Administration. The 14th five-year plan for renewable energy development[Z]. Beijing: National Development and Reform Commission, 2022.
[5]
马爽, 张弘毅, 马炜翔, 等. 基于沙戈荒地区源荷随机特性的多能源优化运行研究综述[J]. 高电压技术, 2025, 51(2): 507-519.
MA Shuang, ZHANG Hongyi, MA Weixiang, et al. Research review on the optimal operation of multi-energy system in Gobi and desert areas based on stochastic characteristics of source-load[J]. High Voltage Engineering, 2025, 51(2): 507-519.
[6]
张艳, 张旭, 张静怡, 等. 考虑风电不确定性的沙戈荒新能源基地交直流混合外送系统最大传输能力评估[J]. 电力建设, 2024, 45(12): 174-186.
ZHANG Yan, ZHANG Xu, ZHANG Jingyi, et al. Evaluation of total transmission capacity of AC-DC hybrid delivery system in desert new energy base considering the uncertainty of wind power[J]. Electric Power Construction, 2024, 45(12): 174-186.
[7]
董丝雨. 如何加快“沙戈荒” 新能源基地建设[N]. 人民日报, 2025-04-06(1).
[8]
孙一丁, 王千辰, 谢忱峥, 等. 计及特高压直流输电特性的沙戈荒基地输-储协同规划方法[J]. 电力建设, 2025, 46(3): 72-84.
SUN Yiding, WANG Qianchen, XIE Chenzheng, et al. Transmission-storage collaborative planning method for the bases in the Gobi and desertification land accounting for UHVDC transmission characteristics[J]. Electric Power Construction, 2025, 46(3): 72-84.
[9]
王月, 申建建, 程春田, 等. 考虑电站集群与发电时变特性的风光出力描述方法[J]. 电网技术, 2023, 47(4): 1558-1572.
WANG Yue, SHEN Jianjian, CHENG Chuntian, et al. Description of wind and solar power generation considering power plant clusters and time-varying power characteristics[J]. Power System Technology, 2023, 47(4): 1558-1572.
[10]
张义会. 考虑系统不确定性的配电网集群多目标划分方法研究[D]. 南京: 南京理工大学, 2023.
ZHANG Yihui. Research on multi-objective partition method of distribution network cluster considering system uncertainty[D]. Nanjing: Nanjing University of Science and Technology, 2023.
[11]
丁坤, 陈博洋, 秦建茹, 等. 大规模新能源集群接入弱电网的消纳能力评估方法[J]. 电力建设, 2023, 44(11): 86-94.
Abstract
高比例新能源接入区域系统强度弱,已经逐步成为制约新能源消纳的重要因素,因此亟需提出一种适用于新能源集群弱电网系统的新能源消纳能力评估方法。首先基于容量短路比指标计算方法,并以临界短路比指标约束建立了新能源消纳能力与新能源并网点系统强度之间的关联,阐述了弱电网系统制约新能源消纳的机理,并分析了无功补偿方式对弱电网系统新能源消纳的提升机理;然后,在传统时序生产模拟算法基础上,加入短路比约束,提出一种考虑短路比约束的时序生产模拟模型,以准确评估弱电网系统新能源消纳能力。最后,结合我国“三北”地区某新能源汇集送端系统工程,开展了基于短路比约束的弱电网系统新能源消纳评估应用研究,并进一步量化分析了各无功补偿方式对新能源消纳提升的效果。
DING Kun, CHEN Boyang, QIN Jianru, et al. Evaluation method of consumption ability of new large scale energy clusters connected to weak grids[J]. Electric Power Construction, 2023, 44(11): 86-94.

The high proportion of new energy access to regional systems is weak and has gradually become a critical factor restricting the consumption of new energy. Therefore, there is an urgent need to propose a new energy consumption capacity evaluation method suitable for new weak energy cluster grid systems. First, based on the calculation method of the capacity short-circuit ratio (SCR-S) index and the constraint of the critical short-circuit ratio (CSCR) index, the relationship between the new energy consumption capacity and the strength of the grid-connected system is established. The mechanism of the weak grid system that restricts new energy consumption is expounded, and the improvement mechanism of reactive power compensation for the new energy consumption of the weak grid system is analyzed. Second, based on the traditional time-series production simulation algorithm, a short-circuit ratio (SCR) constraint is added, and a time-series production simulation model considering the SCR constraint is proposed to accurately evaluate the new energy consumption capacity of the weak grid system. Finally, combined with anew energy collection and transmission system project in the three northern regions of China, the application research of new energy consumption evaluation of weak grid systems based on the SCR constraint is conducted, and the effect of reactive power compensation methods on new energy consumption is further analyzed quantitatively.

[12]
庄重, 苏慧玲, 段梅梅, 等. 面向新型电力负荷管理的混杂负荷集群协同管控[J]. 电网技术, 2024, 48(8): 3459-3466.
ZHUANG Zhong, SU Huiling, DUAN Meimei, et al. Hybrid load cluster collaboration control for new power load management[J]. Power System Technology, 2024, 48(8): 3459-3466.
[13]
郝玲, 陈磊, 徐飞, 等. 基于智能融合终端的新型配电网协同自治调控运营模式及关键技术[J]. 全球能源互联网, 2023, 6(5): 459-472.
HAO Ling, CHEN Lei, XU Fei, et al. New collaborative autonomy regulation operation mode and key technology for distribution network based on intelligent terminal[J]. Journal of Global Energy Interconnection, 2023, 6(5): 459-472.
[14]
于琳, 孙莹, 徐然, 等. 改进粒子群优化算法及其在电网无功分区中的应用[J]. 电力系统自动化, 2017, 41(3): 89-95, 128.
YU Lin, SUN Ying, XU Ran, et al. Improved particle swarm optimization algorithm and its application in reactive power partitioning of power grid[J]. Automation of Electric Power Systems, 2017, 41(3): 89-95, 128.
[15]
陈楷, 王景钢, 王卉, 等. 考虑电动汽车与分布式光伏协同的配电网集群划分与运行调度策略[J]. 南方电网技术, 2025, 19(3): 15-23, 38.
CHEN Kai, WANG Jinggang, WANG Hui, et al. Cluster partitioning and operation scheduling strategy of distribution network considering electric vehicles and distributed PV collaboration[J]. Southern Power System Technology, 2025, 19(3): 15-23, 38.
[16]
王月. 耦合风光出力不确定性的梯级水电站群短期优化调度[D]. 大连: 大连理工大学, 2022.
WANG Yue. Short-term optimal operation of cascade hydropower stations coupled with uncertainty of wind and solar output[D]. Dalian: Dalian University of Technology, 2022.
[17]
杨大勇, 葛琪, 董永超, 等. 基于K均值聚类的光伏电站运行状态模式识别研究[J]. 电力系统保护与控制, 2016, 44(14): 25-30.
YANG Dayong, GE Qi, DONG Yongchao, et al. Research on operation state pattern recognition of PV station based on the principle of K-means clustering[J]. Power System Protection and Control, 2016, 44(14): 25-30.
[18]
曾昊. 可再生能源集群划分方法研究[D]. 成都: 四川大学, 2021.
ZENG Hao. Research on the division method of renewable energy clusters[D]. Chengdu: Sichuan University, 2021.
[19]
胡迪. 含分布式可再生能源集群的配电系统规划研究[D]. 合肥: 合肥工业大学, 2020.
HU Di. Research on distribution system planning with distributed renewable energy clusters[D]. Hefei: Hefei University of Technology, 2020.
[20]
张旭, 陈云龙, 王仪贤, 等. 基于潮流断面修正的含风电电网无功-电压分区方法[J]. 电力自动化设备, 2019, 39(10): 48-54.
ZHANG Xu, CHEN Yunlong, WANG Yixian, et al. Reactive power-voltage partitioning of power grid with wind power based on correction of power flow section[J]. Electric Power Automation Equipment, 2019, 39(10): 48-54.
[21]
赵乔, 张锐, 宋雄, 等. 贵州省风光资源分布及出力特性分析[J]. 水力发电, 2022, 48(12): 81-86, 91.
ZHAO Qiao, ZHANG Rui, SONG Xiong, et al. Analysis on the distribution and output characteristics of wind power and photovoltaic resources in Guizhou Province[J]. Water Power, 2022, 48(12): 81-86, 91.
[22]
闵昊凌. 新能源高效消纳的风光水储配置及交易方法研究[D]. 北京: 华北电力大学, 2024.
MIN Haoling. Study on the allocation and trading method of scenery and water storage for efficient consumption of new energy[D]. Beijing: North China Electric Power University, 2024.
[23]
石鹏, 王永灿, 王曦, 等. 考虑光伏调频作用的电力系统频率动态特性分析[J]. 电力自动化设备, 2025, 45(5): 110-117, 184.
SHI Peng, WANG Yongcan, WANG Xi, et al. Frequency dynamic characteristic analysis of power system considering frequency regulation effect of photovoltaic[J]. Electric Power Automation Equipment, 2025, 45(5): 110-117, 184.
[24]
李立新, 田旭, 刘飞, 等. 基于混合自适应核密度估计的风电波动特性分析[J]. 可再生能源, 2024, 42(7): 923-928.
LI Lixin, TIAN Xu, LIU Fei, et al. Analysis of wind power fluctuation characteristics based on hybrid adaptive kernel density estimation[J]. Renewable Energy Resources, 2024, 42(7): 923-928.
[25]
饶志, 杨再敏, 蒙文川, 等. 基于改进型非参数核密度估计法的南方区域风电出力特性分析[J]. 电网与清洁能源, 2022, 38(6): 81-88, 97.
RAO Zhi, YANG Zaimin, MENG Wenchuan, et al. An analysis of wind power output characteristics in Southern China Region based on improved non-parametric kernel density estimation[J]. Power System and Clean Energy, 2022, 38(6): 81-88, 97.
[26]
XIAO H Y, HE X X, LI C L. Probability density forecasting of wind power based on transformer network with expectile regression and kernel density estimation[J]. Electronics, 2023, 12(5): 1187.
A comprehensive and accurate wind power forecast assists in reducing the operational risk of wind power generation, improves the safety and stability of the power system, and maintains the balance of wind power generation. Herein, a hybrid wind power probabilistic density forecasting approach based on a transformer network combined with expectile regression and kernel density estimation (Transformer-ER-KDE) is methodically established. The wind power prediction results of various levels are exploited as the input of kernel density estimation, and the optimal bandwidth is achieved by employing leave-one-out cross-validation to arrive at the complete probability density prediction curve. In order to more methodically assess the predicted wind power results, two sets of evaluation criteria are constructed, including evaluation metrics for point estimation and interval prediction. The wind power generation dataset from the official website of the Belgian grid company Elia is employed to validate the proposed approach. The experimental results reveal that the proposed Transformer-ER-KDE method outperforms mainstream recurrent neural network models in terms of point estimation error. Further, the suggested approach is capable of more accurately capturing the uncertainty in the forecasting of wind power through the construction of accurate prediction intervals and probability density curves.
[27]
赵洪斌. 多时间尺度下基于相关系数的光伏电站出力特性分析[J]. 青海大学学报, 2020, 38(5): 60-65.
ZHAO Hongbin. Analysis on the output characteristics of photovoltaic power station based on the correlation coefficient over multiple time scales[J]. Journal of Qinghai University, 2020, 38(5): 60-65.
[28]
YU H, ZHOU C H, BAO J C, et al. Analysis and effect evaluation of offshore wind power output characteristics based on Gaussian mixed clustering[J]. Procedia Computer Science, 2023, 224: 389-394.
[29]
XING Z Q, PAN Y Q, YANG Y T, et al. Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction[J]. Applied Energy, 2024, 365: 123276.
[30]
程博, 黑文斌, 程磊, 等. 以构网型储能为核心的“沙戈荒” 地区微电网项目建设探究[J]. 中国电力企业管理, 2025(3): 29-31.
CHENG Bo, HEI Wenbin, CHENG Lei, et al. Research on the construction of microgrid project in Shagehuang area with grid-type energy storage as the core[J]. China Power Enterprise Management, 2025(3): 29-31.
[31]
郭怿. 适应跨区域外送消纳的水风光储互补短期协调运行研究[D]. 西安: 西安理工大学, 2023.
GUO Yi. Study on short-term coordinated operation of water, wind, light and storage complementary to cross-regional delivery and consumption[D]. Xi’an: Xi’an University of Technology, 2023.
[32]
荆志宇, 李培强, 林文婷. 结合贝叶斯优化及通道注意力的双端优化时序式风功率预测模型[J]. 电力系统及其自动化学报, 2024, 36(8): 39-47, 59.
JING Zhiyu, LI Peiqiang, LIN Wenting. Double-side optimized time-series wind power prediction model combining Bayesian optimization and channel attention[J]. Proceedings of the CSU-EPSA, 2024, 36(8): 39-47, 59.
[33]
韩丽, 李梦洁, 乔妍. 基于低频波动挖掘和高频校正的风电超短期预测[J]. 电网技术, 2022, 46(7): 2750-2758.
HAN Li, LI Mengjie, QIAO Yan. Ultra-short-term prediction of wind power based on low-frequency fluctuation mining and high-frequency correction[J]. Power System Technology, 2022, 46(7): 2750-2758.

Funding

National Natural Science Foundation of China(52077078)
2025 Hebei Province Graduate Student Innovation Capacity Development Funded Project(CXZZBS2025192)
PDF(3097 KB)

Accesses

Citation

Detail

Sections
Recommended

/