PDF(2718 KB)
Two Stage Robust Optimization of Economic Dispatch for Comprehensive Energy System Considering Hydrogen Ammonia Storage and Transportation
HU Li, CHENG Jing, LIU Yale
Electric Power Construction ›› 2026, Vol. 47 ›› Issue (1) : 138-149.
PDF(2718 KB)
PDF(2718 KB)
Two Stage Robust Optimization of Economic Dispatch for Comprehensive Energy System Considering Hydrogen Ammonia Storage and Transportation
[Objective] To address the power imbalance between renewable generation(wind/solar)and load demand,this paper proposes a two-stage robust optimization-based economic dispatch method for integrated energy systems,incorporating hydrogen-ammonia storage and transportation. [Methods] First,to fully exploit the synergistic potential of hydrogen-based short- and long-term energy storage technologies,a hybrid energy storage model is established,integrating electro-thermal storage,short-term hydrogen storage,and seasonal hydrogen storage. Second,to enable large-scale and long-distance hydrogen transportation,a hydrogen-ammonia storage and transportation model is constructed within the hybrid energy storage framework via "hydrogen-ammonia-hydrogen" or "hydrogen-ammonia" conversion processes,enabling both cross-temporal hydrogen storage and cross-spatial transportation. Finally,considering uncertainties on both the source and load sides,a two-stage robust optimization-based economic dispatch model is developed with the objective of minimizing total system costs. [Conclusions] Simulation results demonstrate that,compared with conventional hydrogen storage methods,the proposed approach reduces hydrogen storage and transportation costs while improving renewable energy consumption,system economy,and robustness,thereby verifying its effectiveness and feasibility. [Conclusions] A hybrid energy storage model integrating electro/thermal storage with short-/long-term hydrogen storage is established,enabling spatiotemporal hydrogen utilization,enhancing renewable energy consumption,and reducing operational costs. An innovative ammonia-based hydrogen storage technology is adopted,where the "hydrogen-ammonia-hydrogen" or "hydrogen-ammonia" conversion process lowers storage and transportation costs. By accounting for source-load uncertainty,the system achieves flexible balance between economy and robustness. A current limitation of the model is that it does not integrate the electricity‑hydrogen‑ammonia with other energy carriers(e.g.,biomass,geothermal)to realize broader multi-energy synergy.
integrated energy system / seasonal hydrogen storage / hybrid energy storage / hydrogen ammonia storage and transportation / two-stage robust optimization / economic dispatch
| [1] |
舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
|
| [2] |
王蓬蓬, 宋运忠. 计及最恶劣场景概率和供需灵活性的综合能源系统分布鲁棒低碳优化调度[J]. 电力系统保护与控制, 2024, 52(13): 78-89.
|
| [3] |
|
| [4] |
姜海洋, 杜尔顺, 马佳豪, 等. 考虑长周期供需不平衡风险的新型电力系统规划方法[J]. 中国电机工程学报, 2024, 44(15): 5845-5858.
|
| [5] |
叶露遥, 黄河, 王建学, 等. 考虑时段校核和季节性储能的多区互联电力系统年度发电计划[J]. 电力自动化设备, 2024, 44(7): 223-230.
|
| [6] |
袁铁江, 王康, 滕越, 等. 氢能提升火电机组灵活性研究综述及展望[J]. 高电压技术, 2025, 51(5): 2061-2077.
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
严嘉鑫, 范宏, 贾庆山, 等. 计及共享氢储能和虚拟储能的多园区综合能源系统协同规划[J]. 智慧电力, 2025, 53(6): 10-18.
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
徐波, 伍声宇, 侯东羊, 等. 考虑季节性储氢的区域能源系统优化模型[J]. 智慧电力, 2024, 52(2): 40-47.
|
| [15] |
陈明健, 陈胜, 卫志农, 等. 考虑季节性储氢的电-气-氢混联综合能源系统优化调度[J]. 电网技术, 2025, 49(1): 32-40.
|
| [16] |
杨胜, 樊艳芳, 侯俊杰, 等. 可再生能源ALK-PEM联合制氢系统多时间尺度优化运行策略[J]. 电力系统保护与控制, 2025, 53(3): 68-80.
|
| [17] |
任洲洋, 罗潇, 覃惠玲, 等. 考虑储氢物理特性的含氢区域综合能源系统中长期优化运行[J]. 电网技术, 2022, 46(9): 3324-3333.
|
| [18] |
沈侃恺, 夏冰清, 年珩, 等. 计及电解槽并网点电压影响的风光并网系统制氢效率优化[J]. 电力科学与技术学报, 2025, 40(4): 182-192.
|
| [19] |
张岩, 杨晓辉. 计及源荷灵活协调响应和氢能精细化利用的区域综合能源系统低碳优化[J]. 电力科学与技术学报, 2025, 40(4): 217-232.
|
| [20] |
李子晨, 夏杨红, 孙勇, 等. 考虑氢能长短周期储能特性的电氢综合能源系统容量配置方法[J]. 电网技术, 2025, 49(1): 12-21.
|
| [21] |
袁文腾, 陈亮, 王春波, 等. 基于氨储能技术的电转氨耦合风-光-火综合能源系统双层优化调度[J]. 中国电机工程学报, 2023, 43(18): 6992-7003.
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
中核汇能(山东)能源有限公司,中核坤华能源发展有限公司,中核汇能有限公司. 一种用于氢氨储制的电力供应系统及方法:202311495304.5[P]. 2024-02-02.
CNNC Huineng (Shandong) Energy Co, Ltd, CNNC Kunhua Energy Development Co, Ltd, CNNC Huineng Co, Ltd. A power supply system and method for hydrogen ammonia storage: 202311495304.5[P]. 20224-02-02.
|
| [28] |
孔令国, 贾忠华, 石振宇, 等. 考虑上/下网电量约束的风光氢氨耦合系统容量优化配置[J]. 智慧电力, 2025, 53(1): 75-81, 97.
|
| [29] |
王运, 蒙飞, 张超, 等. 氨分解制氢储能系统容量对电力系统性能的影响[J]. 储能科学与技术, 2024, 13(2): 589-597.
由于在储能和制氢方面具有显著的优势,氨制氢储能系统可以在未来“双碳”目标推进和能源系统建设中扮演重要角色。本工作模拟了氨分解管式填充床反应器在电加热情况下的工作特性,并将其纳入到考虑源荷两侧不确定性和风光火储的电力系统中。分析了在三种不同电力系统装机构成下,氨分解系统装机容量增加对电力系统的度电成本、度电碳排放、新能源发电占比、新能源利用率和氢气日产量等性能指标的影响。结果表明:氨分解系统可以有效提高新能源发电消纳水平,不同装机构成下配备最大氨分解系统容量可使得新能源利用率提高5.5%~62.4%,新能源发电占比提高14.2%~160.8%;由此带来的度电碳排放降低0.9%~22.8%,而度电成本提高7.6%~34.5%;氢气日产量分别达到3.9万吨、10.4万吨和17.1万吨。本文研究结果可为在电力系统中配置氨分解制氢储能系统以推动碳减排和氢能技术发展提供参考。
Due to its remarkable advantages, the ammonia decomposition hydrogen production and energy storage system are crucial for advancing future dual carbon goals and energy system construction. Herein, the operating characteristics of an ammonia decomposition tubular filled-bed reactor under electrical heating are simulated and incorporated into a power system, considering uncertainties on both sides of the source load. The effects of increased capacity of the installed ammonia decomposition system on the performance indicators of the power system, such as electricity costs, carbon emissions per kWh, share of new energy generation, utilization rate of new energy, and daily hydrogen production, are analyzed under three different power system installation compositions. The results show that the ammonia decomposition system can effectively improve the consumption level of new energy generation. The maximum capacity of the ammonia decomposition system can increase the utilization rate of new energy by 5.5%—62.4% and the share of new energy generation by 14.2%—160.8% under the three compositions; the resulting carbon emissions from electricity generation are reduced by 0.9%—22.8%, and the cost of electricity generation is increased by 7.6%—34.5%. For the three compositions, the daily hydrogen production reaches 39,000, 104,000, and 171,000 tons, respectively. The results of this study can provide a reference for configuring the ammonia decomposition hydrogen storage system in the power system to reduce carbon emission and promote hydrogen energy technology development. |
| [30] |
吴全, 沈珏新, 余磊, 等. “双碳” 背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33, 39.
|
| [31] |
黄元平, 苏睿, 何国彬, 等. 考虑电-氢混合储能的电-热综合能源系统最优规划[J]. 电力系统保护与控制, 2025, 53(13): 152-162.
|
| [32] |
杨胜, 樊艳芳, 侯俊杰, 等. 考虑平抑风光波动的ALK-PEM电解制氢系统容量优化模型[J]. 电力系统保护与控制, 2024, 52(1): 85-96.
|
| [33] |
|
| [34] |
王开艳, 梁岩, 贾嵘, 等. 不确定环境下基于纳什谈判的含掺氢燃气综合能源多微网两阶段优化调度[J]. 电网技术, 2023, 47(8): 3141-3159.
|
| [35] |
陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46(6): 2042-2054.
|
| [36] |
|
/
| 〈 |
|
〉 |