Two Stage Robust Optimization of Economic Dispatch for Comprehensive Energy System Considering Hydrogen Ammonia Storage and Transportation

HU Li, CHENG Jing, LIU Yale

Electric Power Construction ›› 2026, Vol. 47 ›› Issue (1) : 138-149.

PDF(2718 KB)
PDF(2718 KB)
Electric Power Construction ›› 2026, Vol. 47 ›› Issue (1) : 138-149. DOI: 10.12204/j.issn.1000-7229.2026.01.011
Dispatch & Operation

Two Stage Robust Optimization of Economic Dispatch for Comprehensive Energy System Considering Hydrogen Ammonia Storage and Transportation

Author information +
History +

Abstract

[Objective] To address the power imbalance between renewable generation(wind/solar)and load demand,this paper proposes a two-stage robust optimization-based economic dispatch method for integrated energy systems,incorporating hydrogen-ammonia storage and transportation. [Methods] First,to fully exploit the synergistic potential of hydrogen-based short- and long-term energy storage technologies,a hybrid energy storage model is established,integrating electro-thermal storage,short-term hydrogen storage,and seasonal hydrogen storage. Second,to enable large-scale and long-distance hydrogen transportation,a hydrogen-ammonia storage and transportation model is constructed within the hybrid energy storage framework via "hydrogen-ammonia-hydrogen" or "hydrogen-ammonia" conversion processes,enabling both cross-temporal hydrogen storage and cross-spatial transportation. Finally,considering uncertainties on both the source and load sides,a two-stage robust optimization-based economic dispatch model is developed with the objective of minimizing total system costs. [Conclusions] Simulation results demonstrate that,compared with conventional hydrogen storage methods,the proposed approach reduces hydrogen storage and transportation costs while improving renewable energy consumption,system economy,and robustness,thereby verifying its effectiveness and feasibility. [Conclusions] A hybrid energy storage model integrating electro/thermal storage with short-/long-term hydrogen storage is established,enabling spatiotemporal hydrogen utilization,enhancing renewable energy consumption,and reducing operational costs. An innovative ammonia-based hydrogen storage technology is adopted,where the "hydrogen-ammonia-hydrogen" or "hydrogen-ammonia" conversion process lowers storage and transportation costs. By accounting for source-load uncertainty,the system achieves flexible balance between economy and robustness. A current limitation of the model is that it does not integrate the electricity‑hydrogen‑ammonia with other energy carriers(e.g.,biomass,geothermal)to realize broader multi-energy synergy.

Key words

integrated energy system / seasonal hydrogen storage / hybrid energy storage / hydrogen ammonia storage and transportation / two-stage robust optimization / economic dispatch

Cite this article

Download Citations
HU Li , CHENG Jing , LIU Yale. Two Stage Robust Optimization of Economic Dispatch for Comprehensive Energy System Considering Hydrogen Ammonia Storage and Transportation[J]. Electric Power Construction. 2026, 47(1): 138-149 https://doi.org/10.12204/j.issn.1000-7229.2026.01.011

References

[1]
舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672.
[2]
王蓬蓬, 宋运忠. 计及最恶劣场景概率和供需灵活性的综合能源系统分布鲁棒低碳优化调度[J]. 电力系统保护与控制, 2024, 52(13): 78-89.
WANG Pengpeng, SONG Yunzhong. Distributed robust low-carbon optimal scheduling of an integrated energy system considering worst-case scenario probability and flexibility of supply and demand[J]. Power System Protection and Control, 2024, 52(13): 78-89.
[3]
GAO Y, TAHIR M, SIANO P, et al. Optimization of renewable energy-based integrated energy systems: a three-stage stochastic robust model[J]. Applied Energy, 2025, 377: 124635.
[4]
姜海洋, 杜尔顺, 马佳豪, 等. 考虑长周期供需不平衡风险的新型电力系统规划方法[J]. 中国电机工程学报, 2024, 44(15): 5845-5858.
JIANG Haiyang, DU Ershun, MA Jiahao, et al. Power system optimal planning method considering long-term imbalance risk[J]. Proceedings of the CSEE, 2024, 44(15): 5845-5858.
[5]
叶露遥, 黄河, 王建学, 等. 考虑时段校核和季节性储能的多区互联电力系统年度发电计划[J]. 电力自动化设备, 2024, 44(7): 223-230.
YE Luyao, HUANG He, WANG Jianxue, et al. Annual generation plan for multi-zone interconnected power system considering periodic verification and seasonal energy storage[J]. Electric Power Automation Equipment, 2024, 44(7): 223-230.
[6]
袁铁江, 王康, 滕越, 等. 氢能提升火电机组灵活性研究综述及展望[J]. 高电压技术, 2025, 51(5): 2061-2077.
YUAN Tiejiang, WANG Kang, TENG Yue, et al. Review and prospect of hydrogen energy to enhance the flexibility of thermal power generating units[J]. High Voltage Engineering, 2025, 51(5): 2061-2077.
[7]
ZHOU Y X, MIN C H, WANG K, et al. Optimization of integrated energy systems considering seasonal thermal energy storage[J]. Journal of Energy Storage, 2023, 71: 108094.
[8]
LIU X H, ZU L Y, WEI Z B, et al. Two-layer optimal scheduling of integrated electric-hydrogen energy system with seasonal energy storage[J]. International Journal of Hydrogen Energy, 2024, 82: 1131-1145.
[9]
ABBAS T, CHEN S, CHEN C. Risk-averse coordinated operation of hydrogen-integrated energy hubs with seasonal energy storage[J]. Journal of Energy Storage, 2024, 100: 113476.
[10]
严嘉鑫, 范宏, 贾庆山, 等. 计及共享氢储能和虚拟储能的多园区综合能源系统协同规划[J]. 智慧电力, 2025, 53(6): 10-18.
YAN Jiaxin, FAN Hong, JIA Qingshan, et al. Collaborative planning of multi-park integrated energy systems considering shared hydrogen energy storage and virtual energy storage[J]. Smart Power, 2025, 53(6): 10-18.
[11]
ZHU S H, DU B H, LU X Y, et al. Design and optimization of a cascade hydrogen storage system for integrated energy utilization[J]. Journal of Energy Storage, 2024, 96: 112732.
[12]
LU T G, YI X N, LI J, et al. Collaborative planning of integrated hydrogen energy chain multi-energy systems: a review[J]. Applied Energy, 2025, 393: 126019.
[13]
LI L Y, SUN Y, HAN Y, et al. Seasonal hydrogen energy storage sizing: two-stage economic-safety optimization for integrated energy systems in northwest China[J]. iScience, 2024, 27(9): 110691.
[14]
徐波, 伍声宇, 侯东羊, 等. 考虑季节性储氢的区域能源系统优化模型[J]. 智慧电力, 2024, 52(2): 40-47.
XU Bo, WU Shengyu, HOU Dongyang, et al. Regional energy system optimization model considering seasonal hydrogen storage[J]. Smart Power, 2024, 52(2): 40-47.
[15]
陈明健, 陈胜, 卫志农, 等. 考虑季节性储氢的电-气-氢混联综合能源系统优化调度[J]. 电网技术, 2025, 49(1): 32-40.
CHEN Mingjian, CHEN Sheng, WEI Zhinong, et al. Optimal dispatch of electricity-gas-hydrogen hybrid integrated energy system considering seasonal hydrogen storage[J]. Power System Technology, 2025, 49(1): 32-40.
[16]
杨胜, 樊艳芳, 侯俊杰, 等. 可再生能源ALK-PEM联合制氢系统多时间尺度优化运行策略[J]. 电力系统保护与控制, 2025, 53(3): 68-80.
YANG Sheng, FAN Yanfang, HOU Junjie, et al. Multi-time scale optimization strategy of a renewable energy ALK-PEM combined hydrogen production system[J]. Power System Protection and Control, 2025, 53(3): 68-80.
[17]
任洲洋, 罗潇, 覃惠玲, 等. 考虑储氢物理特性的含氢区域综合能源系统中长期优化运行[J]. 电网技术, 2022, 46(9): 3324-3333.
REN Zhouyang, LUO Xiao, QIN Huiling, et al. Mid/long-term optimal operation of regional integrated energy systems considering hydrogen physical characteristics[J]. Power System Technology, 2022, 46(9): 3324-3333.
[18]
沈侃恺, 夏冰清, 年珩, 等. 计及电解槽并网点电压影响的风光并网系统制氢效率优化[J]. 电力科学与技术学报, 2025, 40(4): 182-192.
SHEN Kankai, XIA Bingqing, NIAN Heng, et al. Optimization of hydrogen production efficiency in wind-solar grid-connected system considering voltage impact at grid connection point of electrolytic cell[J]. Journal of Electric Power Science and Technology, 2025, 40(4): 182-192.
[19]
张岩, 杨晓辉. 计及源荷灵活协调响应和氢能精细化利用的区域综合能源系统低碳优化[J]. 电力科学与技术学报, 2025, 40(4): 217-232.
ZHANG Yan, YANG Xiaohui. Low-carbon optimization of regional integrated energy systems considering flexible and coordinated source-load response and refined utilization of hydrogen energy[J]. Journal of Electric Power Science and Technology, 2025, 40(4): 217-232.
[20]
李子晨, 夏杨红, 孙勇, 等. 考虑氢能长短周期储能特性的电氢综合能源系统容量配置方法[J]. 电网技术, 2025, 49(1): 12-21.
LI Zichen, XIA Yanghong, SUN Yong, et al. Optimal sizing of electricity-hydrogen integrated energy system considering multi-timescale operation of hydrogen storage system[J]. Power System Technology, 2025, 49(1): 12-21.
[21]
袁文腾, 陈亮, 王春波, 等. 基于氨储能技术的电转氨耦合风-光-火综合能源系统双层优化调度[J]. 中国电机工程学报, 2023, 43(18): 6992-7003.
YUAN Wenteng, CHEN Liang, WANG Chunbo, et al. Bi-level optimal scheduling of power-to-ammonia coupling wind-photovoltaic-thermal integrated energy system based on ammonia energy storage technology[J]. Proceedings of the CSEE, 2023, 43(18): 6992-7003.
[22]
KHALIGH V, GHEZELBASH A, AKHTAR M S, et al. Optimal integration of a low-carbon energy system:a circular hydrogen economy perspective[J]. Energy Conversion and Management, 2023, 292: 117354.
[23]
CHEN X Y, CHEN S, LI Q H, et al. Technical and economic analysis of renewable energy systems with hydrogen-ammonia energy storage: a comparison of different ammonia synthesis methods[J]. Journal of Energy Storage, 2025, 113: 115549.
[24]
SMITH C, TORRENTE-MURCIANO L. The importance of dynamic operation and renewable energy source on the economic feasibility of green ammonia[J]. Joule, 2024, 8(1): 157-174.
[25]
YANG S S, WU H, SONG J Z, et al. Two-stage robust optimization scheduling for integrated energy systems considering ammonia energy and waste heat utilization[J]. Energy Conversion and Management, 2024, 319: 118922.
[26]
ZHANG W, LIU J. Low-carbon optimal dispatch of park integrated energy system considering coordinated ammonia production from multiple hydrogen energy[J]. Renewable Energy, 2024, 237: 121712.
[27]
中核汇能(山东)能源有限公司,中核坤华能源发展有限公司,中核汇能有限公司. 一种用于氢氨储制的电力供应系统及方法:202311495304.5[P]. 2024-02-02.
CNNC Huineng (Shandong) Energy Co, Ltd, CNNC Kunhua Energy Development Co, Ltd, CNNC Huineng Co, Ltd. A power supply system and method for hydrogen ammonia storage: 202311495304.5[P]. 20224-02-02.
[28]
孔令国, 贾忠华, 石振宇, 等. 考虑上/下网电量约束的风光氢氨耦合系统容量优化配置[J]. 智慧电力, 2025, 53(1): 75-81, 97.
KONG Lingguo, JIA Zhonghua, SHI Zhenyu, et al. Capacity optimization configuration of wind-solar-hydrogen-ammonia coupling system considering on/off grid electricity constraints[J]. Smart Power, 2025, 53(1): 75-81, 97.
[29]
王运, 蒙飞, 张超, 等. 氨分解制氢储能系统容量对电力系统性能的影响[J]. 储能科学与技术, 2024, 13(2): 589-597.
Abstract
由于在储能和制氢方面具有显著的优势,氨制氢储能系统可以在未来“双碳”目标推进和能源系统建设中扮演重要角色。本工作模拟了氨分解管式填充床反应器在电加热情况下的工作特性,并将其纳入到考虑源荷两侧不确定性和风光火储的电力系统中。分析了在三种不同电力系统装机构成下,氨分解系统装机容量增加对电力系统的度电成本、度电碳排放、新能源发电占比、新能源利用率和氢气日产量等性能指标的影响。结果表明:氨分解系统可以有效提高新能源发电消纳水平,不同装机构成下配备最大氨分解系统容量可使得新能源利用率提高5.5%~62.4%,新能源发电占比提高14.2%~160.8%;由此带来的度电碳排放降低0.9%~22.8%,而度电成本提高7.6%~34.5%;氢气日产量分别达到3.9万吨、10.4万吨和17.1万吨。本文研究结果可为在电力系统中配置氨分解制氢储能系统以推动碳减排和氢能技术发展提供参考。
WANG Yun, MENG Fei, ZHANG Chao, et al. Effect of ammonia decomposition hydrogen production and energy storage system capacity on performance of power system[J]. Energy Storage Science and Technology, 2024, 13(2): 589-597.

Due to its remarkable advantages, the ammonia decomposition hydrogen production and energy storage system are crucial for advancing future dual carbon goals and energy system construction. Herein, the operating characteristics of an ammonia decomposition tubular filled-bed reactor under electrical heating are simulated and incorporated into a power system, considering uncertainties on both sides of the source load. The effects of increased capacity of the installed ammonia decomposition system on the performance indicators of the power system, such as electricity costs, carbon emissions per kWh, share of new energy generation, utilization rate of new energy, and daily hydrogen production, are analyzed under three different power system installation compositions. The results show that the ammonia decomposition system can effectively improve the consumption level of new energy generation. The maximum capacity of the ammonia decomposition system can increase the utilization rate of new energy by 5.5%—62.4% and the share of new energy generation by 14.2%—160.8% under the three compositions; the resulting carbon emissions from electricity generation are reduced by 0.9%—22.8%, and the cost of electricity generation is increased by 7.6%—34.5%. For the three compositions, the daily hydrogen production reaches 39,000, 104,000, and 171,000 tons, respectively. The results of this study can provide a reference for configuring the ammonia decomposition hydrogen storage system in the power system to reduce carbon emission and promote hydrogen energy technology development.

[30]
吴全, 沈珏新, 余磊, 等. “双碳” 背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33, 39.
WU Quan, SHEN Juexin, YU Lei, et al. Analysis on the hydrogen-ammonia storage and transportation technology and economical efficiency against the “dual-carbon” Background[J]. Petroleum and New Energy, 2022, 34(5): 27-33, 39.
[31]
黄元平, 苏睿, 何国彬, 等. 考虑电-氢混合储能的电-热综合能源系统最优规划[J]. 电力系统保护与控制, 2025, 53(13): 152-162.
HUANG Yuanping, SU Rui, HE Guobin, et al. Optimal planning of electric-heat integrated energy systems considering electric-hydrogen hybrid energy storage[J]. Power System Protection and Control, 2025, 53(13): 152-162.
[32]
杨胜, 樊艳芳, 侯俊杰, 等. 考虑平抑风光波动的ALK-PEM电解制氢系统容量优化模型[J]. 电力系统保护与控制, 2024, 52(1): 85-96.
YANG Sheng, FAN Yanfang, HOU Junjie, et al. Capacity optimization model for an ALK-PEM electrolytic hydrogen production system considering the stabilization of wind and PV fluctuations[J]. Power System Protection and Control, 2024, 52(1): 85-96.
[33]
ZDRAVESKI V, TODOROVSKI M. A robust optimization model for optimal feeder routing and battery storage systems design[J]. Applied Energy, 2024, 374: 123978.
[34]
王开艳, 梁岩, 贾嵘, 等. 不确定环境下基于纳什谈判的含掺氢燃气综合能源多微网两阶段优化调度[J]. 电网技术, 2023, 47(8): 3141-3159.
WANG Kaiyan, LIANG Yan, JIA Rong, et al. Two-stage optimal scheduling of Nash negotiation-based integrated energy multi-microgrids with hydrogen-doped gas under uncertain environment[J]. Power System Technology, 2023, 47(8): 3141-3159.
[35]
陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46(6): 2042-2054.
CHEN Dengyong, LIU Fang, LIU Shuai. Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power System Technology, 2022, 46(6): 2042-2054.
[36]
QI K, OWUSU E K, FRANCIS SIU M F, et al. A systematic review of construction labor productivity studies: clustering and analysis through hierarchical latent dirichlet allocation[J]. Ain Shams Engineering Journal, 2024, 15(9): 102896.

Funding

National Key R&D Program Project(2021YFB1506902)
National Natural Science Foundation of China(202208120017)
Major Science and Technology Special Project of Xinjiang Uygur Autonomous Region(2022A01001-4)
PDF(2718 KB)

Accesses

Citation

Detail

Sections
Recommended

/