Power Angle Transient Stability Analysis and Inertial Control Strategy for Power Generation System with Controlled Inertia

ZHANG Xiangyu,WANG Shuang,WANG Yi,FU Yuan

Electric Power Construction ›› 2018, Vol. 39 ›› Issue (1) : 106.

PDF(1870 KB)
PDF(1870 KB)
Electric Power Construction ›› 2018, Vol. 39 ›› Issue (1) : 106. DOI: 10.3969/j.issn.1000-7229.2018.01.014

Power Angle Transient Stability Analysis and Inertial Control Strategy for Power Generation System with Controlled Inertia

  •  ZHANG Xiangyu,WANG Shuang,WANG Yi,FU Yuan
     
Author information +
History +

Abstract

 ABSTRACT: The variable speed wind turbines with virtual inertia can improve the system frequency stability, and the power angle transient stability of the power generation system will undergo significant changes due to the change of controllable inertia. Firstly, this paper derives the mathematical model of the interconnected two-regional power grid with wind power at both ends. By theoretically analyzing the influence of wind turbines inertial adjustment on the interconnected system transient energy in two-regional power grid, the system power angle transient stability level is evaluated. Then, for improving the adverse effects of the wind power inertial control on the system power angle transient stability, this paper proposes a variable virtual inertia control strategy of doubly fed induction generator (DFIG) based on transient energy. By rapidly adjusting the inertias at both sides of two-regional power grid, it not only can avoid the power angle instability caused by fast inertial response after failure, but also improve the transient stability of the system. Finally, a simulation model of two-regional interconnected system with high wind power penetration is established to verify the effectiveness of the proposed control strategy.
 

Key words

 KEYWORDS: wind power integration / virtual inertia / transient stability / doubly fed induction generator(DFIG) / power angle instability

 

Cite this article

Download Citations
ZHANG Xiangyu,WANG Shuang,WANG Yi,FU Yuan.
Power Angle Transient Stability Analysis and Inertial Control Strategy for Power Generation System with Controlled Inertia
[J]. Electric Power Construction. 2018, 39(1): 106 https://doi.org/10.3969/j.issn.1000-7229.2018.01.014

References

 [1]MAURICIO J M, MARANO A, GOMEZ-EXPOSITO A, et al. Frequency regulation contribution through variable-speed wind energy conversion systems[J]. IEEE Transactions on Power Systems, 2009, 24(1): 173-180.
[2]VITTAL E, O'MALLEY M, KEANE A. Rotor angle stability with high penetrations of wind generation[J]. IEEE Transactions on Power Systems, 2012, 27(1): 353-362.
[3]REVELG, LEON A E, ALONSO D M, et al. Frequency regulation and inter-area oscillation damping using variable-speed wind generators[C]// 2012 Transmission and Distribution: Latin America Conference and Exposition (T&D-LA). Montevideo: IEEE, 2012: 1-7.
[4]陈玉伟. 可控惯性发电系统的动态频率特性分析与综合控制研究[D]. 保定:华北电力大学, 2016.
CHEN Yuwei. Dynamic frequency characteristic of power generation system with controlled inertia and integrated control[D].Baoding: North China Electric Power University, 2016.
[5]叶瑞丽, 刘瑞叶, 刘建楠, 等. 直驱风电机组风电场接入后的电力系统暂态稳定计算[J]. 电工技术学报, 2014, 29(6): 211-218. 
YE Ruili, LIU Ruiye, LIU Jiannan, et al. Transient stability calculation of power system integrated with direct-drive wind farm with permanent magnet synchronous generators[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 211-218. 
[6]CHOWDHURY B H, MA H T. Frequency regulation with wind power plants[C]//Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh: IEEE, 2008: 1-5. 
[7]TIAN X. Coordinative control strategy of virtual inertia and primary frequency of DFIGs based wind farms[C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Xi'an: IEEE, 2016: 2169-2174.
[8]周天沛, 孙伟. 高渗透率下变速风力机组虚拟惯性控制的研究[J]. 中国电机工程学报, 2017, (2): 486-496.
ZHOU Tianpei,  SUN Wei. Study on virtual inertia control for DFIG-based wind farms with high penetration[J]. Proceedings of the CSEE, 2017, (2): 486-496. 
[9]李和明, 张祥宇, 王毅, 等. 基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J]. 中国电机工程学报, 2012, (7):32-39,188.
LI Heming, ZHANG Xiangyu, WANG Yi, et al. Study on virtual inertia control for DFIG-based wind farms with high penetration[J]. Proceedings of the CSEE, 2012, (7): 32-39,188.
[10]MORREN J, HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434. 
[11]寇凌岳, 艾欣. 惯性时间常数对互联系统暂态稳定性影响的仿真研究[J]. 电力系统保护与控制, 2009, 37(15): 42-47. 
KOU Lingyue, AI Xin. Simulation study of system inertia on power system transient stability[J]. Power System Protection and Control, 2009, 37(15): 42-47
[12]赵振元. 互联电力系统暂态稳定分析[D]. 成都:西南交通大学, 2012.
ZHAO Zhenyuan. Transient stability analysis of interconnected power system[D]. Chengdu:Southwest Jiaotong University, 2012. 
[13]张明理, 徐建源, 李佳珏. 含高渗透率风电的送端系统电网暂态稳定研究[J]. 电网技术, 2013, 37(3): 740-745. 
ZHANG Mingli, XU Jianyuan, LI Jiajue. Research on transient stability of sending power grid containing high proportion of wind power[J]. Power System Technology, 2013, 37(3): 740-745. 
[14]高洵, 吴涛. 电网交流互联对系统暂态稳定性的影响[J]. 电网技术, 2000, 24(6): 21-26. 
GAO  Xun, WU Tao. Influence of AC network interconnection on power system transient stability[J]. Power System Technology, 2000, 24(6): 21-26.
[15]赵振元, 陈维荣, 戴朝华, 等. 系统惯性时间常数对互联电网暂态稳定水平的影响[J]. 电网技术, 2012, (1):102-107.
ZHAO  Zhenyuan, CHEN Weirong, DAI Chaohua, et al. Influence of system inertia time constants on transient stability level of interconnected AC powergrid[J]. Power System Technology, 2012, (1):102-107.
[16]汤奕, 赵丽莉, 郭小江. 风电比例对风火打捆外送系统功角暂态稳定性影响[J]. 电力系统自动化, 2013, 37(20): 34-40. 
TANG Yi, ZHAO Lili, GUO Xiaojiang. Impact of wind power penetration on angle transient stability of wind-thermal combined system[J]. Automation of Electric Power Systems, 2013, 37(20)34-40.
[17]郭小江, 赵丽莉, 汤奕, 等. 风火打捆交直流外送系统功角暂态稳定研究[J]. 中国电机工程学报, 2013, 33(22): 19-25. 
GUO  Xiaojiang, ZHAO Lili, TANG Yi, et al. Study on angle transient stability for wind-thermal-bundled power transmitted by AC/DC system [J]. Proceedings of the CSEE, 2013, 33(22): 19-25.
[18]倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [19]汤蕾, 沈沉, 张雪敏. 大规模风电集中接入对电力系统暂态功角稳定性的影响(一): 理论基础[J]. 中国电机工程学报, 2015, 35(15): 3832-3840. 
TANG Lei, SHEN Chen, ZHANG Xuemin. Impact of large-scale wind power centralized integration on transient angle stability of power systems-Part I: Theoretical foundation[J]. Proceedings of the CSEE, 2015, 35(15): 3832-3840. 
 

Funding

 
PDF(1870 KB)

Accesses

Citation

Detail

Sections
Recommended

/