Analysis and Prospect of Control Strategies for DC Distribution Systems

LI Bin, LIU Haijin, KONG Xiangping, GAO Lei, ZHANG Weixin, GUAN Tianyi

Electric Power Construction ›› 2018, Vol. 39 ›› Issue (11) : 96-108.

PDF(2737 KB)
PDF(2737 KB)
Electric Power Construction ›› 2018, Vol. 39 ›› Issue (11) : 96-108. DOI: 10.3969/j.issn.1000-7229.2018.11.012

Analysis and Prospect of Control Strategies for DC Distribution Systems

  • LI Bin1, LIU Haijin1, KONG Xiangping2, GAO Lei2, ZHANG Weixin 1, GUAN Tianyi1
Author information +
History +

Abstract

Advantages of DC distribution networks in the aspects of distributed generation consumption, DC load access, and network structure upgrade have been widely recognized. However, some new unstable factors are introduced while reducing converting stages and simplifying control objective. This paper performs an extensive review on DC distribution network structure and its characteristics. Then typical operation characteristics and stability problems of DC distribution network are analyzed. Then, several typical control methods and their application scenarios of DC distribution systems are summarized and discussed. The future research challenges, form the authors point of view, are also provided in the final concluding part.

Key words

DC distribution system / characteristics analysis / virtual inertia control / virtual impedance control

Cite this article

Download Citations
LI Bin, LIU Haijin, KONG Xiangping, GAO Lei, ZHANG Weixin, GUAN Tianyi. Analysis and Prospect of Control Strategies for DC Distribution Systems[J]. Electric Power Construction. 2018, 39(11): 96-108 https://doi.org/10.3969/j.issn.1000-7229.2018.11.012

References

[1]孙鹏飞,贺春光,邵华,等. 直流配电网研究现状与发展[J]. 电力自动化设备,2016,36(6): 64-73.
SUN Pengfei, HE Chunguang, SHAO Hua, et al. Research status and development of DC  distribution network[J]. Electric Power Automation Equipment, 2016,36(6): 64-73.
[2]马钊,焦在滨,李蕊. 直流配电网络架构与关键技术[J]. 电网技术, 2017,41(10): 3348-3357.
MA Zhao, JIAO Zaibin, LI Rui. Network structures and key technologies of DC distribution systems [J]. Power System Technology, 2017,41(10): 3348-3357.
[3]SINGHS, GAUTAM A R, FULWANI D. Constant power loads and their effects in DC distributed power systems: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 407-421.
[4]STARKEM R, TOLBERT L M, OZPINECI B. AC vs. DC distribution: A loss comparison[C]// Transmission and Distribution Conference and Exposition, 2008. IEEE/PES, 2008: 1-7.
[5]GERBERD L, VOSSOS V, FENG W, et al. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings[J]. Applied Energy,2018, 210: 1167-1187.
[6]杜翼,江道灼,尹瑞,等. 直流配电网拓扑结构及控制策略[J]. 电力自动化设备, 2015, 35(1): 139-145.
DU Yi, JIANG Daozhuo, YIN Rui, et al. Topological structure and control strategy of DC distribution network [J]. Electric Power Automation Equipment ,2015,35(1): 139-145.
[7]徐政.柔性直流输电系统[M].2版. 北京: 机械工业出版社, 2017.
[8]HOSSAIN M Z, RAHIM N A, SELVARAJ J A L. Recent progress and development on power DC-DC converter topology, control, design and applications: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 205-230.
[9]KAKIGANOH, MIURA Y, ISE T. Low-voltage bipolar-type DC microgrid for super high quality distribution[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3066-3075.
[10]BOROYEVICHD, CVETKOVIC′I, DONG D, et al. Future electronic power distribution systems a contemplative view[C]//12th International Conference on Optimization of Electrical and Electronic Equipment. 2010: 1369-1380.
[11]HUANGA Q, CROW M L, HEYDT G T, et al. The future renewable electric energy delivery and management (FREEDM) system: The energy internet[J]. Proceedings of the IEEE,2011, 99(1): 133-148.
[12]MAGUREANUR, ALBU M, PRIBOIANU M, et al. A DC distribution network with alternative sources[C]//2007 Mediterranean Conference on Control Automation. 2007: 1-4.
[13]STIENEKERM, BUTZ J, RABIEE S, et al. Medium-voltage DC research grid aachen[C]// International ETG Congress 2015. VDE, 2015: 549-555.
[14]KUNDURP. Power system stability and control[M]. New York: McGraw-Hill Education, 1994.
[15]韩祯祥.电力系统分析[M].5版.杭州: 浙江大学出版社,2011.
[16]EMADIA, KHALIGH A, RIVETTA C H, et al. Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives[J]. IEEE Transactions on Vehicular Technology, 2006, 55(4): 1112-1125.
[17]李玉梅,査晓明,刘飞. 含有多个恒功率负荷的多源直流微电网振荡抑制研究[J]. 电力自动化设备, 2014,34(3): 40-46.
LI Yumei, ZHA Xiaoming, LIU Fei. Oscillation suppression of multi-source DC microgrid with multiple constant-power loads [J]. Electric Power Automation Equipment, 2014,34(3): 40-46.
[18]LIUJ, ZHANG W, RIZZONI G. Robust stability analysis of DC microgrids with constant power loads[J]. IEEE Transactions on Power Systems, 2018, 33(1): 851-860.
[19]WUM, LU D. A novel stabilization method of LC input filter with constant power loads without load performance compromise in DC microgrids [J]. IEEE Transactions on Industrial Electronics, 2015, 62(7):4552-4562.
[20]ZHANGL, HARNEFORS L, NEE H. Power-synchronization control of grid-connected voltage-source converters[J]. IEEE Transactions on Power Systems, 2010, 25(2): 809-820.
[21]LUS, XU Z, XIAO L, et al. Evaluation and enhancement of control strategies for VSC stations under weak grid strengths[J]. IEEE Transactions on Power Systems,2018,33(2): 1836-1847.
[22]EGEA-ALVAREZA, FEKRIASL S, HASSAN F, et al. Advanced vector control for voltage source converters connected to weak grids[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3072-3081.
[23]GOLEA M, ZHOU J Z. VSC transmission limitations imposed by AC system strength and AC impedance characteristics[C]//Institution of Engineering and Technology.IET, 2012:1-6.
[24]陆韶琦,徐政. 采用功率同步控制的MMC-HVDC功率极限分析[J]. 中国电机工程学报, 2016,36(7): 1868-1876.
LU Shaoqi, XU Zheng. Analysis of the maximum power flow in power synchronization control based MMC-HVDC [J]. Proceedings of the CSEE, 2016,36(7): 1868-1876.
[25]王旭斌,杜文娟,王海风. 弱连接条件下并网VSC系统稳定性分析研究综述[J]. 中国电机工程学报, 2018, 38(6): 1593-1604.
WANG Xubin, DU Wenjuan, WANG Haifeng. Stability analysis of grid-tied VSC systems under weak connection conditions an overview [J]. Proceedings of the CSEE, 2018, 38(6): 1593-1604.
[26]ZHOUJ Z, DING H, FAN S,et al. Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter[J]. IEEE Transactions on Power Delivery, 2014, 29(5): 2287-2296.
[27]HUANGY, YUAN X, HU J, et al. Modeling of VSC connected to weak grid for stability analysis of DC-link voltage control[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(4): 1193-1204.
[28]ZHOUS, ZOU X, ZHU D, et al. An improved design of current controller for LCL-type grid-connected converter toReduce negative effect of PLL in weak grid[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018,6(2): 648-663.
[29]ZHANGL, HARNEFORS L, NEE H. Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control[J]. IEEE Transactions on Power Systems, 2011, 26(1): 344-355.
[30]ALAWASAK M, MOHAMED Y A I. Impedance and damping characteristics of grid-connected VSCs with power synchronization control strategy[J]. IEEE Transactions on Power Systems, 2015, 30(2): 952-961.
[31]GUANM, PAN W, ZHANG J, et al. Synchronous generator emulation control strategy for voltage source converter (VSC) stations[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3093-3101.
[32]ASHABANIM, MOHAMED Y A I. Integrating VSCs to weak grids by nonlinear power damping controller with self-synchronization capability[J]. IEEE Transactions on Power Systems, 2014, 29(2): 805-814.
[33]RADWANA A A, MOHAMED Y A I. Power synchronization control for grid-connected current-source inverter-based photovoltaic systems[J]. IEEE Transactions on Energy Conversion, 2016, 31(3): 1023-1036.
[34]NANOUS I, PAPATHANASSIOU S A. Grid code compatibility of VSC-HVDC connected offshore wind turbines employing power synchronization control[J]. IEEE Transactions on Power Systems, 2016, 31(6): 5042-5050.
[35]RODRIGUEZP, POU J, BERGAS J, et al. Decoupled double synchronous reference frame PLL for power converters control[J]. IEEE Transactions on Power Electronics, 2007, 22(2):584-592.
[36]ZHANGL, NEE H, HARNEFORS L. Analysis of stability limitations of a VSC-HVDC link using power-synchronization control[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1326-1337.
[37]付强,杜文娟,王海风,等.多端柔性直流输电中换流站的同步切换控制策略[J].电网技术,2018,42(4):1241-1250.
FU Qiang, DU Wenjuan, WANG Haifeng, et al. Synchronous switching control strategy for VSC station in MTDC network [J]. Power System Technology, 2018,42(4):1241-1250.
[38]DRIESENJ, VISSCHER K. Virtual synchronous generators[C]//2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, PA: IEEE, 2008: 1-3.
[39]BECK H P,  HESSE R. Virtual synchronous machine[C]//2007 9th International Conference on Electrical Power Quality and Utilization. Barcelona, Spain: IEEE, 2007:1-6.
[40]BEVRANIH, ISE T, MIURA Y. Virtual synchronous generators: A survey and new perspectives[J]. International Journal of Electrical Power & Energy Systems, 2014, (54): 244-254.
[41]吕志鹏,盛万兴,刘海涛,等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017,37(2): 349-360.
L Zhipeng, SHENG Wanxing, LIU Haitao, et al. Application and challenge of virtual synchronous machine technology in power system [J]. Proceedings of the CSEE, 2017,37(2): 349-360.
[42]ZHONGQ, WEISS G. Synchronverters: Inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267.
[43]ZHONGQ, PHI-LONG N, MA Z, et al. Self-synchronized synchronverters: Inverters without a dedicated synchronization unit[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 617-630.
[44]ALIPOORJ, MIURA Y, ISE T. Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(2): 451-458.
[45]MOO, DARCO S, SUUL J A. Evaluation of virtual synchronous machines with dynamic or quasi-stationary machine models[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5952-5962.
[46]SHINTAIT, MIURA Y, ISE T. Oscillation damping of a distributed generator using a virtual synchronous generator[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 668-676.
[47]SHIK, SONG W, XU P,et al. Low-voltage ride-through control strategy for a virtual synchronous generator based on smooth switching[J]. IEEE Access, 2018,6: 2703-2711.
[48]REMOND, CAIZARES C A, RODRIGUEZ P. Impact of 100-MW-scale PV plants with synchronous power controllers on power system stability in northern Chile[J]. Transmission Distribution IET Generation, 2017, 11(11): 2958-2964.
[49]管敏渊,张浩,楼平,等. 柔性直流输电换流站的同步电机模拟特性分析[J]. 电网技术, 2016, 40(6): 1743-1750.
GUAN Minyuan, ZHANG Hao, LOU Ping, et al. Analysis of VSC-HVDC station characteristic in synchronous machine emulation [J]. Power System Technology, 2016,40(6): 1743-1750.
[50]ZHUJ, BOOTH C D, ADAM G P, et al. Inertia emulation control strategy for VSC-HVDC transmission systems[J]. IEEE Transactions on Power Systems, 2013, 28(2): 1277-1287.
[51]李辉,刘海涛,宋二兵,等. 双馈抽水蓄能机组参与电网调频的改进虚拟惯性控制策略[J]. 电力系统自动化,2017,41(10): 58-65.
LI Hui, LIU Haitao, SONG Erbing, et al. Improved virtual inertia control strategy of doubly fed pumped storage unit for power network frequency modulation [J] Automation of Electric Power Systems, 2017,41(10): 58-65.
[52]朱晓荣,蔡杰,王毅,等. 风储直流微网虚拟惯性控制技术[J]. 中国电机工程学报, 2016, 36(1): 49-58.
ZHU Xiaorong, CAI Jie, WANG Yi, et al. Virtual inertia control of wind-battery-based DC micro-grid [J]. Proceedings of the CSEE, 2016, 36(1): 49-58.
[53]WUW, CHEN Y, LUO A,et al. A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 6005-6016.
[54]李世春,邓长虹,龙志君,等. 风电场等效虚拟惯性时间常数计算[J]. 电力系统自动化, 2016, 40(7): 22-29.
LI Shichun, DENG Changhong, LONG Zhijun, et al. Calculation of equivalent virtual inertia time constant of wind farm[J]. Automation of Electric Power Systems 2016, 40(7): 22-29.
[55]王毅,黑阳,付媛,等. 基于变下垂系数的直流配电网自适应虚拟惯性控制[J]. 电力系统自动化, 2017, 41(8): 116-124.
WNAG Yi, HEI Yang, FU Yuan, et al. Adaptive virtual inertia control of DC distribution network based on variable droop coefficient [J]. Automation of Electric Power Systems 2017, 41(8): 116-124.
[56]于明,王毅,李永刚. 基于预测方法的直流微网混合储能虚拟惯性控制[J]. 电网技术, 2017,41(5): 1526-1532.
YU Ming, WANG Yi, LI Yonggang. Virtual inertia control of hybrid energy storage in DC microgrid based on predictive method [J]. Power System Technology, 2017, 41(5): 1526-1532.
[57]伍文华,陈燕东,罗安,等. 一种直流微网双向并网变换器虚拟惯性控制策略[J]. 中国电机工程学报, 2017, 37(2): 360-372.
WU Wenhua, CHEN Yandong, LUO An, et al. A virtual inertia control strategy for bidirectional grid-connected converters in DC micro-grids [J]. Proceedings of the CSEE, 2017, 37(2): 360-372.
[58]徐海珍,张兴,刘芳,等. 基于超前滞后环节虚拟惯性的VSG控制策略[J]. 中国电机工程学报, 2017, 37(7): 1918-1927.
XU Haizhen, ZHANG Xing, LIU Fang, et al. Virtual synchronous generator control strategy based on lead-lag link virtual inertia [J]. Proceedings of the CSEE, 2017, 37(7): 1918-1927.
[59]LUX, SUN K, GUERRERO J M, et al. Stability enhancement based on virtual impedance for DC microgrids with constant power loads[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 2770-2783.
[60]LI Y, TANG G, GE J, et al. Modeling and damping control of modular multilevel converter based DC grid[J]. IEEE Transactions on Power Systems, 2018, 33(1): 723-735.
[61]陈国柱,赵文强. LCL滤波的并联有源滤波器的虚拟阻尼控制[J]. 高电压技术, 2010, 36(7): 1827-1832.
CHEN Guozhu, ZHAO Wenqiang. Virtual resistor control strategy of parallel active power filter with LCL filter [J]. High Voltage Engineering, 2010, 36(7): 1827-1832.
[62]刘尧,林超,陈滔,等. 基于自适应虚拟阻抗的交流微电网无功功率-电压控制策略[J]. 电力系统自动化, 2017, 41(5): 16-21.
LIU Yao, LIN Chao, CHEN Tao, et al. Reactive power-voltage control strategy of AC microgrid based on adaptive virtual impedance [J]. Automation of Electric Power Systems, 2017, 41(5): 16-21.
[63]WANGX, LI Y W, BLAABJERG F, et al. Virtual-impedance-based control for voltage-source and current-source converters[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 7019-7037.
[64]WANGT, NIAN H, ZHU Z Q, et al. Flexible compensation strategy for voltage source converter under unbalanced and harmonic condition based on a hybrid virtual impedance method[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7656-7673.
[65]RADWANA A A, MOHAMED Y A R I. Linear active stabilization of converter-dominated DC microgrids[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 203-216.
[66]杨东升,阮新波,吴恒. 提高LCL型并网逆变器对弱电网适应能力的虚拟阻抗方法[J]. 中国电机工程学报, 2014, 34(15): 2327-2335.
YANG Dongsheng, RUAN Xinbo, WU Heng. A virtual impedance method to improve the performance of LCL-type grid-connected inverters under weak grid conditions [J]. Proceedings of the CSEE, 2014, 34(15): 2327-2335.
[67]苑宾,许建中,赵成勇,等. 利用虚拟电阻提高接入弱交流电网的 MMC小信号稳定性控制方法[J]. 中国电机工程学报, 2015, 35(15): 3794-3802.
YUAN Bin, XU Jianzhong, ZHAO Chengyong, et al. A virtual resistor based control strategy for enhancing the small-signal stability of MMC Integrated in weak AC system[J]. Proceedings of the CSEE, 2015, 35(15): 3794-3802.
[68]聂程,雷万钧,王跃,等. 多变流器并联时谐振特性及最优虚拟阻尼方法[J]. 中国电机工程学报, 2017, 37(5): 1467-1478.
NIE Cheng, LEI Wanjun, WANG Yue, et al. Resonance analysis of multi-paralleled converter systems and research on optimal virtual resistor damping methods [J]. Proceedings of the CSEE, 2017, 37(5): 1467-1478.
[69]RAHIMIA M, EMADI A. Active damping in DC/DC power electronic converters: A novel method to overcome the problems of constant power loads[J]. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1428-1439.
[70]MAHMOODH, MICHAELSON D, JIANG J. Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1605-1617.
[71]ZHANGY, WEI LI Y. Energy management strategy for supercapacitor in droop-controlled DC microgrid using virtual impedance[J]. IEEE Transactions on Power Electronics, 2017, 32(4): 2704-2716.
[72]NIR, LI Y W, ZHANG Y,et al. Virtual impedance-based selective harmonic compensation (VI-SHC) PWM for current source rectifiers[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3346-3356.
[73]DED, RAMANARAYANAN V. Decentralized parallel operation of inverters sharing unbalanced and nonlinear loads[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3015-3025.
[74]LUX, WANG J, GUERRERO J, et al. Virtual-impedance-based fault current limiters for inverter dominated AC microgrids[T]. IEEE Transactions on Smart Grid, 2018, 9(3):1599-1612.
[75]张帆,许建中,苑宾,等. 基于虚拟阻抗的MMC交、直流侧故障过电流抑制方法[J]. 中国电机工程学报,2016, 36(8): 2103-2113.
ZHANG Fan, XU Jianzhong, YUAN Bin, et al. Over current suppression control for AC and DC faults of modular multilevel converters based on virtual impedance [J]. Proceedings of the CSEE, 2016,36(8): 2103-2113.

Funding

This work is supported by (No. State Grid Corporation of China Research Program).
PDF(2737 KB)

Accesses

Citation

Detail

Sections
Recommended

/