With complete infrastructure and numerous energy storage devices, the industrial parks have the potential to participate in day-ahead peak-load regulation and day-ahead real-time tracking control. There may be many factory buildings in the industrial park, and the types of production devices are different. By adjusting the traditional control method of tie-line power real-time controlled by gas turbine power output, it is difficult to take into account the relationship between various interest subjects under different assessment schemes. Therefore, from the perspective of the park, by using of disposable energy storage devices in the park to implement real-time control, can effectively coordinate the economic interests of all parties, and obtain good control effect. Mathematics model of gas storage, cooling storage, electricity storage and some other storage devices and the thermal model of the room are established in this paper. In response to the tie-line power fluctuations caused by forecast error of the photovoltaic, wind power and other clean energy, and at the same time to ensure a variety of energy storage devices to meet operating constraints and energy balance constraints of cooling, heat, electricity, gas load, this paper proposes an intra-day rolling optimization correction strategy on the basis of MPC. According to the results of day-ahead economic operation, operators can adjust the operating power of energy storage devices to eliminate the influence of uncertain factors in the microgrid, and to ensure the implementation of scheduling results of tracking. Taking an industrial park for battery production in southern China as an example, the effectiveness of the proposed optimization model and algorithm is verified by numerical analysis.
Key words
micro-grid /
model predictive control(MPC) /
intra-day real-time control /
thermal load /
tie-line assessment scheme
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]刘敦楠, 徐尔丰, 许小峰. 面向园区微网的“源-网-荷-储”一体化运营模式[J]. 电网技术, 2018, 42(3): 681-689.
LIU Dunnan, XU Erfeng, XU Xiaofeng. “Source-network-load-storage” integrated operation model for microgrid in park[J]. Power System Technology, 2018, 42(3): 681-689.
[2]郭丽云, 宗毅, 江岳文. 计及需求侧响应的多源微电网优化运行[J]. 供用电, 2017, 34(12): 8-14.
GUO Liyun, ZONG Yi, JIANG Yuewen. Optimal operation of multi-source micro-grid considering demand response[J]. Distribution & Utilization, 2017, 34(12): 8-14.
[3]张世翔, 吕帅康. 面向园区微电网的综合能源系统评价方法[J]. 电网技术, 2018, 42(8): 2431-2439.
ZHANG Shixiang, L Shuaikang. Evaluation method of park-level integrated energy system for microgrid[J]. Power System Technology, 2018, 42(8): 2431-2439.
[4]王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34(2): 10-14, 23.
WANG Chengshan, LI Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34(2): 10-14, 23.
[5]张明锐, 陈洁, 杜志超, 等. 考虑交互功率控制的微网经济运行[J]. 中国电机工程学报, 2014, 34(7): 1013-1023.
ZHANG Mingrui, CHEN Jie, DU Zhichao, et al. Economic operation of micro-grid considering regulation of interactive power[J]. Proceedings of the CSEE, 2014, 34(7): 1013-1023.
[6]潘浩, 彭潇, 潘舒扬, 等. 考虑空调负荷的微网联络线功率波动平抑方法[J]. 南方电网技术, 2016, 10(8): 56-60.
PAN Hao, PENG Xiao, PAN Shuyang, et al. Smoothing method of microgrid tie-line power fluctuation considering air conditioning load[J]. Southern Power System Technology, 2016, 10(8): 56-60.
[7]吴杰, 温晨阳, 李珊, 等. 基于分时电价的光伏-储能系统容量优化配置[J]. 电工电能新技术, 2018, 37(1): 23-30.
WU Jie, WEN Chenyang, LI Shan, et al. Optimal allocation of PV and accumulator system based on time-of-use price[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(1): 23-30.
[8]徐青山, 杨辰星, 颜庆国. 计及规模化空调热平衡惯性的电力负荷日前削峰策略[J]. 电网技术, 2016, 40(1): 156-163.
XU Qingshan, YANG Chenxing, YAN Qingguo. Strategy of day-ahead power peak load shedding considering thermal equilibrium inertia of large-scale air conditioning loads[J]. Power System Technology, 2016, 40(1): 156-163.
[9]DIEKERHOF M, HECKER S, MONTI A. Modeling and optimization of industrial compressed-air energy systems for Demand Response[C]//2016 IEEE International Energy Conference (ENERGYCON). New York, USA: IEEE, 2016.
[10]徐立中, 易永辉, 朱承治, 等. 考虑风电随机性的微网多时间尺度能量优化调度[J]. 电力系统保护与控制, 2014, 42(23): 1-8.
XU Lizhong, YI Yonghui, ZHU Chengzhi, et al. Multi-time scale optimal energy dispatch of microgrid considering stochastic wind power[J]. Power System Protection and Control, 2014, 42(23): 1-8.
[11]刘方, 杨秀, 时珊珊, 等. 不同时间尺度下基于混合储能调度的微网能量优化[J]. 电网技术, 2014, 38(11): 3079-3087.
LIU Fang, YANG Xiu, SHI Shanshan, et al. Hybrid energy storage scheduling based microgrid energy optimization under different time scales[J]. Power System Technology, 2014, 38(11): 3079-3087.
[12]PALMA-BEHNKE R, BENAVIDES C, LANAS F, et al. A microgrid energy management system based on the rolling horizon strategy[J]. IEEE Transactions on Smart Grid, 2013, 4(2): 996-1006.
[13]肖浩, 裴玮, 孔力. 基于模型预测控制的微电网多时间尺度协调优化调度[J]. 电力系统自动化, 2016, 40(18): 7-14, 55.
XIAO Hao, PEI Wei, KONG Li. Multi-time scale coordinated optimal dispatch of microgrid based on model predictive control[J]. Automation of Electric Power Systems, 2016, 40(18): 7-14, 55.
[14]陈健, 张维桐, 张逸成, 等. 考虑不同空调负荷特性的微网双层优化调度[J]. 电网技术, 2018, 42(5): 1424-1431.
CHEN Jian, ZHANG Weitong, ZHANG Yicheng, et al. Bi-level optimal dispatch of microgrid considering different air-conditioning load characteristics[J]. Power System Technology, 2018, 42(5): 1424-1431.
[15]SONG M, GAO C W, YAN H G, et al. Thermal battery modeling of inverter air conditioning for demand response[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 5522-5534.
[16]HUI H X, DING Y, LIU W D, et al. Operating reserve evaluation of aggregated air conditioners[J]. Applied Energy, 2017, 196: 218-228.
[17]马昕, 裴玮, 肖浩, 等. 考虑复杂生产约束的电池生产工业园区能源网络与生产管理综合优化运行[J]. 电网技术, 2018, 42(11): 3566-3575.
MA Xin, PEI Wei, XIAO Hao, et al. Integrated energy network and production management optimization operation of battery production industrial estate considering complex production constraints[J]. Power System Technology, 2018, 42(11): 3566-3575.
[18]邹涛, 丁宝苍, 张端. 模型预测控制工程应用导论[M]. 北京: 化学工业出版社, 2010.
Funding
This work is supported by the National Key Research and Development Program of China(No. 2017YFB0903400).