Day-ahead Optimal Scheduling Model of Integrated Energy System in Industrial Parks Considering Energy Storage Characteristics of Cooling-supply Areas in Buildings

CHEN Houhe,LI Wenming,ZHANG Rufeng,QIAN Yeniu

Electric Power Construction ›› 2019, Vol. 40 ›› Issue (8) : 43-50.

PDF(3365 KB)
PDF(3365 KB)
Electric Power Construction ›› 2019, Vol. 40 ›› Issue (8) : 43-50. DOI: 10.3969/j.issn.1000-7229.2019.08.006

Day-ahead Optimal Scheduling Model of Integrated Energy System in Industrial Parks Considering Energy Storage Characteristics of Cooling-supply Areas in Buildings

  • CHEN Houhe1,LI Wenming1,ZHANG Rufeng1,QIAN Yeniu2
Author information +
History +

Abstract

For industrial parks, there are various types of energy sources and multi-energy complementarity characteristic. The energy storage characteristics of buildings on the user-side in industrial parks can provide additional operational flexibility and help respond to real-time electricity prices with a certain adjustment capability. This paper proposes a day-ahead scheduling model for an integrated energy system in an industrial park that considers the energy storage characteristics of the cooling areas. Firstly, the component modeling in the industrial park is carried out, and the energy storage model of the cooling areas based on detailed thermal model of buildings is further established. Then, with the objective function of minimizing the total operating cost of the integrated energy system in industrial park, the components and energy storage models are integrated into the scheduling model, and the scheduling framework is analyzed for optimal management. Finally, the validity of the model is verified by numerical simulation. The results show that the energy storage characteristics of the cooling areas can effectively reduce the purchased power and operating cost.

Key words

industrial park / integrated energy system / energy storage characteristics / day-ahead optimal scheduling

Cite this article

Download Citations
CHEN Houhe,LI Wenming,ZHANG Rufeng,QIAN Yeniu. Day-ahead Optimal Scheduling Model of Integrated Energy System in Industrial Parks Considering Energy Storage Characteristics of Cooling-supply Areas in Buildings[J]. Electric Power Construction. 2019, 40(8): 43-50 https://doi.org/10.3969/j.issn.1000-7229.2019.08.006

References

[1]周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[2]陈国平, 李明节, 许涛, 等. 我国电网支撑可再生能源发展的实践与挑战[J]. 电网技术, 2017, 41(10): 3095-3103.
CHEN Guoping, LI Mingjie, XU Tao, et al. Practice and challenge of renewable energy development based on interconnected power grids[J]. Power System Technology, 2017, 41(10): 3095-3103.
[3]杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4): 11-24.
YANG Jingwei, ZHANG Ning, WANG Yi, et al. Multi-energy system towards renewable energy accommodation: review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4): 11-24.
[4]贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7): 198-207.
JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39(7): 198-207.
[5]戚艳, 刘敦楠, 徐尔丰, 等. 面向园区能源互联网的综合能源服务关键问题及展望[J]. 电力建设, 2019, 40(1): 123-132.
QI Yan, LIU Dunnan, XU Erfeng, et al. Key issues and prospects of integrated energy service for energy Internet in park[J]. Electric Power Construction, 2019, 40(1): 123-132.
[6]SALTA M, POLATIDIS H, HARALAMBOPOULOS D. Industrial combined heat and power (CHP) planning: Development of a methodology and application in Greece[J]. Applied Energy, 2011, 88(5): 1519-1531.
[7]徐立中,杨光亚,许照,等. 考虑风电随机性的微电网热电联合调度[J]. 电力系统自动化,2011,35(9):53-60,66.
XU Lizhong, YANG Guanya, XU Zhao, et al. Combined scheduling of electricity and heat in a microgrid with volatile wind power[J]. Automation of Electric Power Systems, 2011, 35(9):53-60,66.
[8]王锐, 顾伟, 吴志. 含可再生能源的热电联供型微网经济运行优化[J]. 电力系统自动化, 2011, 35(8): 22-27.
WANG Rui, GU Wei, WU Zhi. Economic and optimal operation of a combined heat and power microgrid with renewable energy resources[J]. Automation of Electric Power Systems, 2011, 35(8): 22-27.
[9]周灿煌, 郑杰辉, 荆朝霞, 等. 面向园区微网的综合能源系统多目标优化设计[J]. 电网技术, 2018, 42(6): 1687-1697.
ZHOU Canhuang, ZHENG Jiehui, JING Zhaoxia, et al. Multi-objective optimal design of integrated energy system for park-level microgrid[J]. Power System Technology, 2018, 42(6): 1687-1697.
[10]马昕, 裴玮, 肖浩, 等. 考虑复杂生产约束的电池生产工业园区能源网络与生产管理综合优化运行[J]. 电网技术, 2018, 42(11): 3566-3575.
MA Xin, PEI Wei, XIAO Hao, et al. Integrated energy network and production management optimization operation of battery production industrial estate considering complex production constraints[J]. Power System Technology, 2018, 42(11): 3566-3575.
[11]蔡超, 窦晓波, 曹水晶, 等. 基于模型预测控制的园区热电联供微电网能量优化[J]. 电力建设, 2019, 40(3): 27-33.
CAI Chao, DOU Xiaobo, CAO Shuijing, et al. Energy optimization based on model predictive control for combined heating and power microgrid in industrial park[J]. Electric Power Construction, 2019, 40(3): 27-33.
[12]徐航, 董树锋, 何仲潇, 等. 基于多能互补的电/热综合需求响应[J]. 电网技术, 2019, 43(2): 480-489.
XU Hang, DONG Shufeng, HE Zhongxiao, et al. Electro-thermal comprehensive demand response based on multi-energy complementarity[J]. Power System Technology, 2019, 43(2): 480-489.
[13]姜子卿, 郝然, 艾芊. 基于冷热电多能互补的工业园区互动机制研究[J]. 电力自动化设备, 2017, 37(6): 260-267.
JIANG Ziqing, HAO Ran, AI Qian. Interaction mechanism of industrial park based on multi-energy complementation[J]. Electric Power Automation Equipment, 2017, 37(6): 260-267.
[14]张硕, 曾鸣, 李英姿, 等. 新能源电力系统用户需求响应复杂适应行为研究[J]. 电力建设, 2017, 38(11): 136-143.
ZHANG Shuo, ZENG Ming, LI Yingzi, et al. Complex adaptive behaviors of users demand response in renewable energy power system[J]. Electric Power Construction, 2017, 38(11): 136-143.
[15]汤奕, 鲁针针, 伏祥运. 居民主动负荷促进分布式电源消纳的需求响应策略[J]. 电力系统自动化, 2015, 39(24): 49-55.
TANG Yi, LU Zhenzhen, FU Xiangyun. Demand response strategies for promoting consumption of distributed power generation with residential active loads[J]. Automation of Electric Power Systems, 2015, 39(24): 49-55.
[16]武赓, 王昊婧, 曾博, 等. 计及灵活热负荷的综合能源服务商购电策略[J]. 电力建设, 2019, 40(1): 1-10.
WU Geng, WANG Haojing, ZENG Bo, et al. Research on energy purchase strategy of the multi-energy service provider considering the flexible thermal load[J]. Electric Power Construction, 2019, 40(1): 1-10.
[17]靳小龙, 穆云飞, 贾宏杰, 等. 融合需求侧虚拟储能系统的冷热电联供楼宇微网优化调度方法[J]. 中国电机工程学报, 2017, 37(2): 581-591.
JIN Xiaolong, MU Yunfei, JIA Hongjie, et al. Optimal scheduling method for a combined cooling, heating and power building microgrid considering virtual storage system at demand side[J]. Proceedings of the CSEE, 2017, 37(2): 581-591.
[18]陈厚合, 李泽宁, 靳小龙, 等. 集成智能楼宇的主动配电网建模及优化方法[J]. 中国电机工程学报, 2018, 38(22): 6550-6563.
CHEN Houhe, LI Zening, JIN Xiaolong, et al. Modeling and optimization of active distribution network with integrated smart buildings[J]. Proceedings of the CSEE, 2018, 38(22): 6550-6563.
[19]谢珍建, 胡卫利, 谈健, 等. 面向区域能源服务商的智能楼宇需求侧响应优化策略[J]. 电力建设, 2018, 39(3): 116-122.
XIE Zhenjian, HU Weili, TAN Jian, et al. Demand response optimization strategy of intelligent buildings for regional energy service providers[J]. Electric Power Construction, 2018, 39(3): 116-122.

Funding

This work is supported by National Natural Science Foundation of China(No.51677022,No.51877033) and the National Key Research and Development Program of China(No.2017YFB0903400).
PDF(3365 KB)

Accesses

Citation

Detail

Sections
Recommended

/