Price Forecast of Power Grid Equipment Based on EEMD-SVM Model

LU Yanchao, WEN Weining, ZHAO Biao, ZHENG Yan, SHI Xuefei

Electric Power Construction ›› 2013, Vol. 34 ›› Issue (1) : 25-30.

PDF(563 KB)
PDF(563 KB)
Electric Power Construction ›› 2013, Vol. 34 ›› Issue (1) : 25-30.

Price Forecast of Power Grid Equipment Based on EEMD-SVM Model

  • LU Yanchao, WEN Weining, ZHAO Biao, ZHENG Yan, SHI Xuefei
Author information +
History +

Abstract

As the price of power grid equipment is nonlinear and non-stable, which leads to big difficulty and low accuracy of forecast, the model of ensemble empirical mode decomposition (EEMD) and support vector machine (SVM) has been built. The empirical mode decomposition (EMD) is improved by EEMD. The history price is divided into several smooth and periodically fluctuated components by EEMD, which is used to forecast with SVM as an input. Finally, the superposition value of forecasted components has been gained as the predictive value of price. Taking the history data of 220 kVA column circuit breaker as samples, the prediction results of EMD-SVM and EEMD-SVM are compared and the errors are analyzed. The results show that the prediction accuracy of EEMD-SVM is better than that of EMD-SVM, which can make references to project cost control and equipment bidding to some extent.

Key words

price of power grid price / ensemble empirical mode decomposition / support vector machine / forecast

Cite this article

Download Citations
LU Yanchao, WEN Weining, ZHAO Biao, ZHENG Yan, SHI Xuefei. Price Forecast of Power Grid Equipment Based on EEMD-SVM Model[J]. Electric Power Construction. 2013, 34(1): 25-30

References

[1]李方吉,李志国.模糊指数平滑法预测电力负荷原理研究[J].电力建设,1993,14(3):1-5.

[2]熊高峰,韩鹏.时间序列分解在短期电价分析与预测中的应用[J].电力系统及其自动化学报,2011, 23 (3):95-100.

[3]鲍永胜,吴振生.基于SVM的时间序列短期风速预测[J].中国电力,2011, 44 (9):61-64.

[4]赵渊,张夏菲.非参数自回归方法在短期电力负荷预测中的应用[J].高电压技术,2011, 37 (2):429-435.

[5]廖峰,刘清良.基于改进灰色模型与综合气象因素的母线负荷预测[J].电网技术,2011, 35 (10):183-188.

[6]Huang N E,Shen Z,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary

time series analysis[J].Proceedings of The Royal Society Soc Lond,1998,454(1971):903-995.

[7]Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,2000:35-39.

[8]叶林,刘鹏.基于经验模态分解和支持向量机的短期风电功率组合预测模型[J].中国电机工程学报,2011,31(5):102-108.

[9]Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Know ledge Discovery,

1998(2): 121-167.

[10]Afzel Noore, Liang Tian. A novel approach for short-term load forecasting using support vector machines [J].

International Journal of Neural Systems, 2011, 14 (5): 2 342-2 347.

[11]Suykens K, Vandewalle J. Recurrent least squares support vector machines [J]. IEEE Trans on Circ its and Systems,

2009, 47 (7): 1 803-1 809.

[12]梁建武,陈祖权.短期负荷预测的聚类组合和支持向量机方法[J].电力系统及其自动化学报,2011, 23 (1):34-38.

[13]张通,张骏.基于混合AGO-SVM的高速公路短时交通量预测研究[J].交通运输系统工程与信息,2011,11(1):157-162.

[14]Stephen C P,Robert J G, Jonathan W E. Application of the Hilbert-Huang Transform to the Analysis of Molecular Dynamics

Simulations[J]. Journal of Physical Chemistry, 2003, 107: 4 869-4 876.

[15]Huang N E, Shen Z, Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-

stationary time series analysis [J]. Ann Rev Fluid Mech, 1999, 31(11):321-325.

[16]Huang N E. A new view of nonlinear water waves-the Hilbert spectrum [J]. Ann Rev Fluid Mech, 1999, 31(1):417-422.

[17]杨云飞. 基于EMD分解技术的不同市场原油价格相关性分析及预测研究[D].湖北:华中科技大学,2011.

[18]刘岱,庞松岭.基于EEMD与动态神经网络的短期负荷预测[J].东北电力大学学报,2009,29(6):20-26.
PDF(563 KB)

Accesses

Citation

Detail

Sections
Recommended

/