PDF(776 KB)
Wind Vibration Responses Analysis of Cup-type Power Transmission Tower Based on Viscoelastic Damper Control
ZHANG Yiguo,ZHAO Huaiyu,WANG Chongyu
Electric Power Construction ›› 2013, Vol. 34 ›› Issue (3) : 22-26.
PDF(776 KB)
PDF(776 KB)
Wind Vibration Responses Analysis of Cup-type Power Transmission Tower Based on Viscoelastic Damper Control
Aimed to a 500 kV power transmission line project, considering the design wind velocity increase (about 35 m/s) in micro-topography or microclimate region, the modal analysis, dynamic time-history analysis and static analysis are carried out on the cup-type power transmission tower with or without viscoelastic damper (VED), respectively. The results show that the natural vibration period of the tower increases by 14.3% after using VED; the wind vibration coefficient first increases, then decreases, with the maximum value of 28.1% appearing at the tower cross arm; the pressure of main material deduces about 14%; the calculated tower weight reduces about 5%. Therefore, the vibration control effect of VED is obvious.
vibration control / viscoelastic damper / 500 kV cup-type power transmission tower / natural vibration period / wind vibration coefficient / pressure of truss / calculation of tower weight
[1]杨靖波,韩军科.1000 kV淮南-上海输变电工程同塔双回钢管塔风振控制[J].中国电机工程学报,2010,30(7):105-110.
[2]曲激婷,李宏男.粘弹性阻尼器在结构减震控制中的位置优化研究[J].振动与冲击,2008,27(6):87-91.
[3]邓洪洲,朱松晔.大跨越输电塔线体系风振控制研究[J].建筑结构学报,2003,24(4):60-64.
[4]李黎,尹鹏.大跨越输电塔-线体系风振控制研究[J].工程力学,2008(12): 213-229.
[5]江宜城,钟寅亥.粘弹性阻尼器控制下大跨越输电塔风振响应分析[J].特种钢结构,2003,4(18):34-36.
[6]郭勇.大跨越输电塔线体系的风振响应及振动控制研究[D].杭州:浙江大学,2006.
[7]梁峰.输电塔的风振控制研究[D].武汉:华中科技大学,2006.
[8]张相庭.结构风压和风振计算[M].上海:同济大学出版社,1985.
[9]DL/T 5154—2002 架空送电线路杆塔结构设计技术规定[S].北京:中国电力出版社,2002.
[10]GB 50009—2012 建筑结构荷载规范[S].北京:中国建筑工业出版社,2012.
/
| 〈 |
|
〉 |