Influence of Heat-Resistant Conductor Operating Temperature on Safety Distance of Live Working

ZHOU Bingling,LIU Kai,WANG Yongqiang,LIU Ting,WU Tian

Electric Power Construction ›› 2013, Vol. 34 ›› Issue (5) : 30-34.

PDF(849 KB)
PDF(849 KB)
Electric Power Construction ›› 2013, Vol. 34 ›› Issue (5) : 30-34.

Influence of Heat-Resistant Conductor Operating Temperature on Safety Distance of Live Working

  • ZHOU Bingling1,2,LIU Kai3,WANG Yongqiang4,LIU Ting3,WU Tian3
Author information +
History +

Abstract

In order to study the impact of heat-resistant conductor operating temperature on the safety distance of live working on power transmission line, the temperature distribution of the heat-resistant conductor was obtained at 180 ℃of the temperature of conductor,and the switching impulse discharge characteristics of 1.0~1.5 m air gap between simulated conductor and tower were gained when the temperature of conductor was between 160 ℃ and 240 ℃. And the influence of heat-resistant conductor operating temperature on the discharge characteristics of the simulated air gap between conductor and tower was analyzed by theoretical calculation, whose results had good consistency with the experimental results. The results show that, when the operating temperature of heat-resistant conductor is 240 ℃, the influence range of high temperature conductor on ambient air temperature is no more than 10 cm range, and the influence on the switching impulse discharge voltage of 1.0~1.5 m air gap is about 2 %. Therefore, the influence of heat-resistant conductor operating temperature on the safety distance can be ignored in the live working of power transmission line.

Key words

heat-resistant conductor / operating temperature / air gap / discharge characteristics / live working / safety distance

Cite this article

Download Citations
ZHOU Bingling,LIU Kai,WANG Yongqiang,LIU Ting,WU Tian. Influence of Heat-Resistant Conductor Operating Temperature on Safety Distance of Live Working[J]. Electric Power Construction. 2013, 34(5): 30-34

References

 


[1]张瑞永,赵新宇,李明,等.输电线路新型节能导线的推广应用[J].电力建设,2012,33(06):89-92.

[2]Zamora I,Mazon A J,Eguia P,et al. High-temperature conductors: a solution in the uprating of overhead transmission lines[C]//Power Tech Proceedings. Porto: IEEE,2001:1-6.

[3]Springer P,Callaway D.Effect of conductor high-temperature on porcelain suspension insulators[C]//Power and Energy Society General Meeting. Minneapolis:IEEE,2010 :1-3.

[4]Ostendorp M, Cannon D, Young J. Performance of transmission line components at increasing operating temperatures[C]//EPRI, Palo Alto, CA: 2003. 100209.

[5]Hill R J.The effect of high temperature conductors on composite suspension insulator performance[C]//Power and Energy Society General Meeting. Minneapolis:IEEE,2010 :1-4.

[6]Alston L L. High-temperature effects on flashover in air[J]. The Institution of Electrical Enginerrs 1958,105(24):549-553.

[7]Allen N L,Kong J C P. Positive corona inception in air at elevated temperature[J]. IEE Proceeding-Science, Measurement and Technology,2006,153(1):31-38.

[8]Allen N L,Ghaffar A. The variation with temperature of positive streamer properties in air[J]. Journal of Physics D:Applied Physics,1995,28(2):338-343.

[9]Allen N L,EI-Naili M. Impluse breakdown of insulators and air gaps of similar electrode configurations effects of temperature[J]. IEEE Transactions on Dielectries and Electrical Insulation,1994,1(6):1148-1155.

[10]Allen N L,Greaves D A. Tests on the breakdown of air at elevated temperatures in non-uniform electric fields[J]. IEE Proceedings-Science, Measurement and Technology,2000, 147(6):291-295.

[11]Aleksandrov N L,Bazelyan E M. Temperature and density effects on the properties of a long positive streamer in air[J]. Journal of Physics D: Applied Physics,1996,29(11):1873-2880.

[12]Aleksandrov N. L, Bazelyan E. M. The effect of initial NO content on spark breakdown in high-temperature air[J]. IEEE Transactions on Plasma Science, 1999, 27(5):1454-1457.

[13]尤传永. 耐热铝合金导线的耐热机理及其在输电线路中的应用[J]. 电力建设,2003,24(8):4-8.

[14]许大成,黄欲成,韩鹏飞,等. 耐热铝合金导线在实际工程中的应用[J].电力科学与工程,2011,27(11):68-71.

[15]GB 26859—2011 电力安全工作规程 电力线路部分[S].

[16]戚柏林. 超耐热间隙型导线在220 kV输电线路中应用与实践[J]. 电力建设,2010,31(8):46-49.

[17]刘俊勇,罗文. 用于架空输电线的不同耐热导线的比较分析[J].电网与清洁能源,2011(3):29-33.

[18]胡毅. 送变电带电作业技术[M].北京:中国电力出版社,2004.

[19]周泽存. 高电压技术[M]. 北京:中国电力出版社, 2007.

[20]严璋,朱德恒. 高电压绝缘技术[M]. 北京:中国电力出版社, 2007.

[21]武占成. 气体放电[M]. 北京:国防工业出版社, 2012.

[22]GB/T 16927.1—2011 高电压试验技术 第1部分:一般定义及试验要求[S].

[23]王伟,丁燕生,李成榕,等.空气温度对电晕笼中导线直流电晕特性的影响[J].高电压技术,2009,35(3):613-617.

[24]李金梅,李强.发热对载流导体绝缘性能不良影响的实验研究[C]//第十一届中国科协年会,北京,2009.

[25]Rizk F A M. Critical switching impulse strength of long air gaps: Modelling of air density effects[J].IEEE Transactions on Power Delivery,1992,7(3):1507-1515.

[26]Pigini A, Sortorio G,Moreno M,et al.Influence of air density on the impulse strength of external insulation[J].IEEE Transactions on Power Apparatus System,1985,PAS-104( 10): 2888-2900.
PDF(849 KB)

Accesses

Citation

Detail

Sections
Recommended

/