Control Strategy of Smoothing Wind Power Output Using Battery Energy   Storage Based on Moving Average Method and   Wind Power Volatility Rate Constraint

CHEN Yueyan,LI Xiangjun,HAN Xiaojuan,LIANG Tingting,HUI Dong

Electric Power Construction ›› 2013, Vol. 34 ›› Issue (7) : 1-5.

PDF(596 KB)
PDF(596 KB)
Electric Power Construction ›› 2013, Vol. 34 ›› Issue (7) : 1-5.

Control Strategy of Smoothing Wind Power Output Using Battery Energy   Storage Based on Moving Average Method and   Wind Power Volatility Rate Constraint

  • CHEN Yueyan1,LI Xiangjun2,HAN Xiaojuan1,LIANG Tingting3,HUI Dong2
Author information +
History +

Abstract

Using battery energy storage system (BESS) to smooth wind power volatility can improve the stability of wind power output. According to the intermittence and volatility of wind power output, a smoothing control strategy by using moving average algorithm for wind power was proposed, which took the state of charge (SOC) in energy storage system and wind power volatility rates into account. It was compared with the traditional first-order low-pass method for smoothing wind power output. The effectiveness of the proposed control strategy was verified with the MATLAB/SIMULINK simulation, whose results have shown that it can smooth the wind power output, and can effectively decrease the battery energy usage and storage energy.

Key words

renewable energy / energy storage system / moving average algorithm / smoothing wind power / wind power volatility rate / state of charge (SOC)

Cite this article

Download Citations
CHEN Yueyan,LI Xiangjun,HAN Xiaojuan,LIANG Tingting,HUI Dong. Control Strategy of Smoothing Wind Power Output Using Battery Energy   Storage Based on Moving Average Method and   Wind Power Volatility Rate Constraint[J]. Electric Power Construction. 2013, 34(7): 1-5

References

 


[1]Barton J,Infield D.Energy storage and its use with intermittent renewable energy[J].IEEE Trans on Energy Conversion,2004,19(2):441-448.

[2]王成山,于波,肖峻,等.平滑可再生能源发电系统输出波动的储能系统容量优化方法[J]. 中国电机工程学报,2012,32(16):1-8.

[3]卢继平,朱三立,韩涛,等.风电场储能容量合理取值范围分析[J].重庆大学学报,2010,33(8):46-50.

[4]王成山,李鹏.分布式发电,微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14.

[5]靳文涛,马会萌,谢志佳.电池储能系统平滑风电功率控制策略[J].电力建设,2012,33(7):7-11.

[6]左文霞,李澍森,吴夕科,程军照.微电网技术及发展概况[J].中国电力,2009,42(7):26-30.

[7]张仁元,柯秀芳,秦红.相变储能技术在电力调峰中的工程应用[J].中国电力,2002,35(9):21-24.

[8]余运佳,惠东.中大型超导储能装置的研制与应用[J].中国电力,1997,30(3):57-59.

[9]黄亚峰.风电机输出功率波动平抑控制的可行性研究[D].吉林:东北电力大学,2007:8-18.

[10]周雪松,权博,马幼捷,等.超导磁储能装置在风电场中控制策略的研究[J].超导技术,2009, 37(10):12-16.

[11]于芃,周玮,孙辉,等.用于风电功率平抑的混合储能系统及其控制系统设计[J].中国电机工程学报,2011,31(17):127-133.

[12]宇航.利用储能系统平滑风电功率波动的仿真研究[D].吉林:东北电力大学,2010.

[13]Li X. Fuzzy adaptive Kalman filter for wind power output smoothing with battery energy storage system[J]. IET Renewable Power Generation, 2012, 6(5): 340-347.

[14]Li X J, Li Y, Han X J, et al. Application of fuzzy wavelet transform to smooth wind/PV hybrid power system output with battery energy storage system[J]. Energy Procedia, 2011, 12: 994-1001.

[15]Li X J, Li N, Jia X C, et al. Fuzzy logic based smoothing control of wind/PV generation output fluctuations with battery energy storage system[C]//The 14th International Conference on Electrical Machines and Systems (ICEMS’2011). Beijing: IEEE, 2011: 1-5.

[16]Li X J, Hui D, Wu L, et al. Control strategy of battery state of charge for wind/battery hybrid power system[C]//IEEE International Symposium on Industrial Electronics (ISIE2010). Bari:IEEE,2010: 2723-2726.

[17]胡松,江小炜,杨光,等.滑动平均滤波在微弱脉冲信号检测中的应用[J].计算机与数字工程,2007,35(10):169-171

[18]Li X J, Hui D, Xu M, et al. Integration and energy management of large-scale lithium-ion battery energy storage station[C]//The 15th International Conference on Electrical Machines and Systems (ICEMS’2012). Japan:IEEJ Industry Applications Society, 2012:1-6.

[19]黄俊.配合风电接入的储能系统研究[D].上海:上海交通大学,2010.

[20]GB/T 19963—2011风电场接入电力系统技术规定[S]. 北京:中国标准出版社,2011.
PDF(596 KB)

Accesses

Citation

Detail

Sections
Recommended

/