In view of the fact that the key characteristic variables of coordinated operation of power, heat, gas, cooling and steam subsystems (PHGCSS) are not fully considered in integrated energy system (IES), optimal day-ahead steady-state analysis of IES considering the key characteristic variables of energy subsystem is studied. Firstly, on the basis of multi-type load demand, energy hub (EH) and energy coupling mode are designed. On the basis of EH, the model architecture of energy station with PHGCSS is proposed. Secondly, the steady-state mathematical models of PHGCSS in IES are developed. On the basis of peak-valley time-of-use power price mechanism, the influence of power storage, heat storage and cooling storage on optimal day-ahead steady state of IES is analyzed. Then, a nonlinear optimization model for day-ahead steady-state IES is proposed under different load structures with PHGCSS. Finally, the numerical case verifies validity of optimal calculation and steady-state operation analysis for IES. The models and methods are suitable for optimal day-ahead steady-state analysis of IES containing PHGCS and dynamic economic dispatch, which can reasonably reflect operation characteristics of IES.
Key words
integrated energy system (IES) /
power /
heat /
gas /
cooling and steam /
energy hub (EH) /
steady-state optimization /
energy storage
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]黄国日, 刘伟佳, 文福拴, 等. 具有电转气装置的电-气混联综合能源系统的协同规划[J]. 电力建设, 2016, 37(9): 1-13.
HUANG Guori, LIU Weijia, WEN Fushuan, et al. Collaborative planning of integrated electricity and natural gas energy systems with power-to-gas stations[J]. Electric Power Construction, 2016, 37(9): 1-13.
[2]ZENG Q, ZHANG B H, FANG J K, et al. Coordinated operation of the electricity and natural gas systems with bi-directional energy conversion[J]. Energy Procedia, 2017, 105: 492-497.
[3]马钊, 周孝信, 尚宇炜, 等. 能源互联网概念、关键技术及发展模式探索[J]. 电网技术, 2015, 39(11): 3014-3022.
MA Zhao, ZHOU Xiaoxin, SHANG Yuwei, et al. Exploring the concept, key technologies and development model of energy internet[J]. Power System Technology, 2015, 39(11): 3014-302.
[4]ZHAO W Z, ZHENG J H, ZHENG Z M, et al. Multi-objective operation optimization of micro-grid based on electro-thermal coupling constraints[C]// IEEE International Electrical and Energy Conference. Beijing, China: IEEE, 2017: 1-6.
[5]孙可, 何德, 李春筱, 等. 考虑冰蓄冷空调多模式的工厂综合能源系统多能协同优化模型[J]. 电力建设, 2017, 38(12): 12-19.
SUN Ke, HE De, LI Chunxiao, et al. Multi-energy cooperative optimization model of factory IES considering multi-model of ice storage[J]. Electric Power Construction, 2017, 38(12): 12-19.
[6]殷爽睿, 艾芊, 曾顺奇, 等. 能源互联网多能分布式优化研究挑战与展望[J]. 电网技术, 2018,42(5): 1359-1369.
YIN Shuangrui, AI Qian, ZENG Shunqi, et al. Challenges and prospects of multi-energy distributed optimization for energy Internet[J]. Power System Technology, 2018,42(5): 1359-1369.
[7]WANG D, LIU L, JIA H J, et al. Review of key problems related to integrated energy distribution systems[J]. CSEE Journal of Power and Energy Systems, 2018, 4(2): 130-145.
[8]黎静华, 黄玉金, 张鹏. 综合能源系统多能流潮流计算模型与方法综述[J]. 电力建设, 2018, 39(3): 1-11.
LI Jinghua, HUANG Yujin, ZHANG Peng. Review of multi-energy flow calculation model and method in integrated energy system[J]. Electric Power Construction, 2018, 39(3): 1-11.
[9]杨帅, 陈磊, 徐飞, 等. 基于能量流的电热综合能源系统弃风消纳优化调度模型[J]. 电网技术, 2018, 42(2): 417-426.
YANY Shuai, CHEN Lei, XU Fei, et al. Optimal dispatch model of wind power accommodation in integrated electrical-thermal power system based on power flow model[J]. Power System Technology, 2018,42(2): 417-426.
[10]许健, 施锦月, 张建华, 等. 基于生物质热电混合供能的城镇综合能源双层优化[J]. 电力系统自动化, 2018, 42(14): 23-31.
XU Jian, SHI Jinyue, ZHANG Jianhua, et al. Bi-level optimization of urban integrated energy system based on biomass combined heat and power supply[J]. Automation of Electric Power Systems, 2018, 42(14): 23-31.
[11]刘怀东, 冯志强, 王锦桥, 等. 计及条件风险价值的综合能源系统经济调度[J]. 电网技术, 2018,42(5): 1385-1392.
LIU Huaidong, FENG Zhiqiang, WANG Jinqiao, et al. Economic dispatch of integrated energy systems considering conditional value-at-risk[J]. Power System Technology, 2018,42(5): 1385-1392.
[12]孙秋野, 赵美伊, 陈月, 等. 能源互联网多能源系统最优功率流[J]. 中国电机工程学报, 2017, 37(6): 16-25.
SUN Qiuye, ZHAO Meiyi, CHEN Yue, et al. Optimal energy flow of multiple energy systems in energy internet[J]. Proceedings of the CSEE, 2017, 37(6): 16-25.
[13]NI L N, LIU W J, WEN F S, et al. Optimal operation of electricity, natural gas and heat systems considering integrated demand responses and diversified storage devices[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(3): 423-437.
[14]刘柳, 王丹, 贾宏杰, 等. 广义多源储能系统综合建模与能量优化分析[J]. 电力建设, 2017, 38(12):2-11.
LIU Liu, WANG Dan, JIA Hongjie, et al. Integrated modeling and energy optimization analysis of generalized multi-source energy storage system[J]. Electric Power Construction, 2017, 38(12):2-11.
[15]宋晨辉, 冯健, 杨东升, 等. 考虑系统耦合性的综合能源协同优化[J]. 电力系统自动化, 2018,42(10): 38-45,86.
SONG Chenhui, FENG Jiang, YANG Dongsheng, et al. Collaborative optimization of integrated energy considering system coupling[J]. Automation of Electric Power Systems, 2018,42(10): 38-45,86.
[16]周任军, 晁岱旭, 李新军, 等. 空间耦合粒子群优化算法及峰谷电价下IES-CCHP区域联合调度[J]. 电力自动化设备, 2016, 36(12): 11-17.
ZHOU Renjun, CHAO Daixu, LI Xinjun, et al. SC-PSO algorithm and IES-CCHP regional joint dispatch with TOU price[J]. Electric Power Automation Equipment, 2016, 36(12): 11-17.
[17]LIU X Z, JENKINS N, WU J Z, et al. Combined analysis of electricity and heat networks[J]. Energy Procedia, 2014, 61: 155-159.
[18]靳小龙, 穆云飞, 贾宏杰, 等. 考虑配电网重构的区域综合能源系统最优混合潮流计算[J]. 电力系统自动化, 2017, 41(1): 18-24.
JIN Xiaolong, MU Yunfei, JIA Hongjie, et al. Calculation of optimal hybrid power flow for integrated community energy system considering electric distribution network reconfiguration[J]. Automation of Electric Power Systems, 2017, 41(1): 18-24.
[19]ZHONG Y J, XIE D L, ZHAI S W, et al. Day-ahead hierarchical steady state optimal operation for integrated energy system based on energy hub[J]. Energies, 2018, 11(10), 2765.
[20]顾伟, 陆帅, 王珺, 等. 多区域综合能源系统热网建模及系统运行优化[J]. 中国电机工程学报, 2017, 37(5): 1305-1315.
GU Wei, LU Shuai, WANG Jun, et al. Modeling of the heating network for multi-district integrated energy system and its operation optimization[J]. Proceedings of the CSEE 2017, 37(5): 1305-1315.
[21]MANSHADI S D, KHODAYAR M E. Coordinated operation of electricity and natural gas systems: A convex relaxation approach[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3342-3354.
[22]XU X, JIA H J, CHIANG H D, et al. Dynamic modeling and interaction of hybrid natural gas and electricity supply system in microgrid[J]. IEEE Transactions on Power Systems, 2015, 30(3): 1212-1221.
[23]于波, 吴亮, 卢欣, 等. 区域综合能源系统优化调度方法[J]. 电力建设, 2016, 37(1): 70-76.
YU Bo, WU Liang, LU Xin, et al. Optimal dispatching method of integrated community energy system[J]. Electric Power Construction, 2016, 37(1): 70-76.
Funding
This work is supported by Science and Technology Project of State Grid Electric Power Research Institute/NARI Group Corporation/NARI Technology Co., Ltd. “Research on simulation evaluation key technologies of integrated energy system”, Science and Technology Project of State Grid Corporation of China “Research on key technologies and framework of provincial energy internet”(No. LNDL2018ZX-11), National Natural Science Foundation of China(No. 61673161) and Natural Science Foundation of Jiangsu Province of China(No. BK20161510).