PDF(9862 KB)
Construction Method of Wind Power Output Scenario Matching with Typical Daily Load
YUAN Tiejiang, YANG Yang, DONG Litong
Electric Power Construction ›› 2022, Vol. 43 ›› Issue (11) : 132-141.
PDF(9862 KB)
PDF(9862 KB)
Construction Method of Wind Power Output Scenario Matching with Typical Daily Load
The randomness of wind power output makes it difficult to balance the robustness and computational efficiency of microgrid grid connection planning. A wind power output scenario construction method matching with typical daily load scenarios is proposed. The daily load trend and the location of peak and valley periods should be considered in the microgrid planning. The daily load curve trend and peak and valley period information are extracted by using the membership function, and combined with the improved ordered clustering, a typical daily load selection method is proposed; In the effective time of typical daily load, using the maximum increase and decrease of wind power output, combined with interpolation method, a wind power scene construction method is proposed. Then an evaluation index system is established to evaluate the selection of typical daily load and the construction effect of corresponding wind power scenarios. Finally, the effectiveness of the proposed model is verified by power grid data.
microgrid planning and operation / scene construction / ordered clustering / evaluating indicator
| [1] |
林俐, 周鹏, 王世谦, 等. 考虑相关性的地区风电出力对调峰容量的影响分析[J]. 现代电力, 2016, 33(6): 21-26.
|
| [2] |
李震. 基于时序生产模拟的区域电网新能源消纳能力研究[J]. 现代工业经济和信息化, 2020, 10(12): 68-69.
|
| [3] |
辛锐, 张瑜, 郝保中, 等. 考虑响应不确定性的高比例可再生能源微电网优化策略[J]. 供用电, 2021, 38(9): 35-41.
|
| [4] |
谢姿, 张惠娟, 刘琪, 等. 考虑蓄电池寿命的分布式电源容量优化配置[J]. 太阳能学报, 2021, 42(10): 424-430.
|
| [5] |
|
| [6] |
|
| [7] |
袁铁江, 车勇, 孙谊媊, 等. 基于时序仿真和GA的风储系统储能容量优化配比[J]. 高电压技术, 2017, 43(7): 2122-2130.
|
| [8] |
韩宏志, 杨洋, 郜宁, 等. 基于正态分布的典型负荷日拟合方法[J]. 分布式能源, 2020, 5(4): 69-73.
|
| [9] |
蔡国伟, 王大亮, 王燕涛, 等. 一种基于最短距离聚类与关联度分析的典型日选取新方法[J]. 中国电力, 2008, 41(4): 15-18.
|
| [10] |
孟令奎, 段红伟, 黄长青, 等. 一种基于语义聚类的典型日负荷曲线选取方法[J]. 华北电力大学学报(自然科学版), 2013, 40(1): 43-48.
|
| [11] |
徐邦恩, 蔺红. 基于改进模糊聚类的典型日负荷曲线选取方法[J]. 电测与仪表, 2019, 56(4): 21-26.
|
| [11] |
徐邦恩, 蔺红. 基于改进模糊聚类的典型日负荷曲线选取方法[J]. 电测与仪表, 2019(4):21-26.
|
| [12] |
杨恒岳, 刘青荣, 阮应君. 基于k-means聚类算法的分布式能源系统典型日冷热负荷选取[J]. 热力发电, 2021, 50(3): 84-90.
|
| [13] |
袁铁江, 曹继雷. 计及风电-负荷不确定性的风氢低碳能源系统容量优化配置[J]. 高电压技术, 2022, 48(6): 2037-2044.
|
| [14] |
张国庆, 张海静, 杨东亮, 等. 一种基于反一致自适应聚类的典型日选取方法[J]. 电力科学与工程, 2017, 33(7): 26-31.
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
林俐, 费宏运, 刘汝琛, 等. 基于分层聚类算法的地区风电出力典型场景选取方法[J]. 电力系统保护与控制, 2018, 46(7): 1-6.
|
| [19] |
刘汝琛. 基于实测数据的地区风电出力的典型场景选取[D]. 北京: 华北电力大学, 2016.
|
| [20] |
赵岳恒, 刘民伟, 王文飞, 等. 采用谱聚类的风电典型出力场景选取方法[J]. 云南电力技术, 2020, 48(1): 17-20.
|
| [21] |
谢永胜, 杨洋, 荆世博, 等. 基于时序生产模拟和弃风率约束的电解槽额定功率边界计算方法[J]. 电器与能效管理技术, 2021(7): 23-28.
|
| [22] |
郭力, 杨书强, 刘一欣, 等. 风光储微电网容量规划中的典型日选取方法[J]. 中国电机工程学报, 2020, 40(8): 2468-2479.
|
| [23] |
|
| [24] |
何韩吉, 邓光明. 基于共同趋势提取的多维有序聚类方法[J]. 统计与信息论坛, 2020, 35(12): 15-20.
|
| [25] |
周世兵, 徐振源, 唐旭清. K-means算法最佳聚类数确定方法[J]. 计算机应用, 2010, 30(8): 1995-1998.
K-means聚类算法是以确定的类数k为前提对数据集进行聚类的,通常聚类数事先无法确定。从样本几何结构的角度设计了一种新的聚类有效性指标,在此基础上提出了一种新的确定K-means算法最佳聚类数的方法。理论研究和实验结果验证了以上算法方案的有效性和良好性能。
K-means clustering algorithm clusters datasets according to the certain clustering number k. However,k cannot be confirmed beforehand. A new clustering validity index was designed from the standpoint of sample geometry. Based on the index, a new method for determining the optimal clustering number in K-means clustering algorithm was proposed. Theoretical research and experimental results demonstrate the validity and good performance of the above-mentioned algorithm.
|
| [26] |
韩彦林. 关于小概率事件的认识以及应用[J]. 科技视界, 2017(19): 14-15.
|
| [27] |
杨富炜. 基于弃风消纳的冷热电联供微网优化配置[D]. 沈阳: 沈阳工业大学, 2020.
|
/
| 〈 |
|
〉 |