Key Technologies and Development Trends of Zero-Carbon Park Optimization Planning for Energy Internet

SONG Zhuoran, CHENG Mengzeng, NIU Wei, WANG Zongyuan, LIU Jiaheng, GE Leijiao

Electric Power Construction ›› 2022, Vol. 43 ›› Issue (12) : 15-26.

PDF(5125 KB)
PDF(5125 KB)
Electric Power Construction ›› 2022, Vol. 43 ›› Issue (12) : 15-26. DOI: 10.12204/j.issn.1000-7229.2022.12.002
Review

Key Technologies and Development Trends of Zero-Carbon Park Optimization Planning for Energy Internet

Author information +
History +

Abstract

Zero-carbon park is one of the key points in the practice of carbon neutralization and emission peak. However, in the context of the new power system, the electric energy supply of the park is characterized by the high integration of water, electricity, gas and heat, strong uncertainty of source-grid-load-storage, and complex and diverse primary and secondary topologies, which makes it difficult for the existing planning and design technologies to meet the application requirements. To this end, this paper discusses the current status, key technologies and future development trends of the optimal planning and design of zero-carbon parks. Firstly, the current status of research on zero-carbon parks and their planning and design technologies is explained from the perspective of energy interconnection. Secondly, the key technologies for optimal planning of zero-carbon parks, including energy-transportation system coupling, multi-energy complementarity, energy gradient utilization, demand response, and progressive planning, are summarized and explained. Finally, the future development trend of park planning is analyzed in terms of sharing concept, digital twin and cloud energy storage, and the technical challenges and research directions of park planning are indicated from the perspectives of concept application, disciplinary intersection, information integration and situational awareness, in order to provide stronger technical support for the development of zero-carbon parks for energy internet in China.

Key words

energy internet / zero-carbon park / optimization planning / development trend

Cite this article

Download Citations
Zhuoran SONG , Mengzeng CHENG , Wei NIU , et al . Key Technologies and Development Trends of Zero-Carbon Park Optimization Planning for Energy Internet[J]. Electric Power Construction. 2022, 43(12): 15-26 https://doi.org/10.12204/j.issn.1000-7229.2022.12.002

References

[1]
何立峰. 从百年党史中汲取力量全力做好发展改革工作[EB/OL].(2022-01-06) [2022-05-12]. https://www.ndrc.gov.cn/fzggw/wld/hlf/lddt/202201/t20220106_1311522.html?code=&state=123
[2]
国家能源局. 国家能源局关于印发《2022年能源监管工作要点》的通知[EB/OL].(2022-01-12) [2022-05-12]. http://zfxxgk.nea.gov.cn/2022-01/12/c_1310432975.htm
[3]
陈娟, 鲁斌, 冯宇博, 等. 共享理念下的区域能源互联网生态系统价值共创模式与机制[J/OL]. 中国电机工程学报, 2022(2022-01-18) [2022-05-12]. https://doi.org/10.13334/j.0258-8013.pcsee.211670
CHEN Juan, LU Bin, FENG Yubo, et al. Value co-production model and mechanism of regional energy internet ecosystem under the concept of sharing[J/OL]. Proceedings of the CSEE, 2022(2022-01-18) [2022-05-12]. https://doi.org/10.13334/j.0258-8013.pcsee.211670
[4]
葛磊蛟, 汪宇倩, 戚嘉兴, 等. 面向城市能源互联网的电力物联网内涵、架构和关键技术[J]. 电力建设, 2019, 40(9): 91-98.
Abstract
电力物联网是保障电力系统安全可靠、经济高效运行的重要基础,也是支撑城市能源互联网的基础平台。为此,文章对面向城市能源互联网的电力物联网内涵、架构和关键技术进行了深入探讨和分析。首先,梳理和分析了城市能源互联网和电力物联网的区别,并指出了面向城市能源互联网的电力物联网内涵;其次,分别提出了面向城市能源互联网的电力物联网的体系架构、物理架构和系统架构;最后,结合现有的“云大物移”、电力光纤入户、“四网融合”和“三表集抄”等技术,从信息化和通信化2个角度阐述了面向城市能源互联网的电力物联网关键技术内容及其现存的不足,以期为未来城市能源互联网的发展和研究提供一定的借鉴。
GE Leijiao, WANG Yuqian, QI Jiaxing, et al. The content, frameworks and key technologies of power internet of things for urban energy internet[J]. Electric Power Construction, 2019, 40(9): 91-98.
The power internet of things (IOT) is the important foundation to ensure the safe, reliable, economical and efficient operation of the power system, and also a basic platform to support the urban energy internet. In this paper it makes a deep discussion and analysis on the content, frameworks and key technologies of the power internet of things for urban energy internet. Firstly, the differences between the urban energy internet and the power internet of things are sorted out and analyzed, and the content of the power internet of things oriented to the urban energy internet is proposed and the framework, physical framework and system framework of power internet of things for urban energy internet are proposed. Finally, combined with cloud computing technology, big data, internet of things, mobile internet, power fiber to the home, four-network convergence of telecommunication network, internet, broadcast network and power grid, and three-meter collection of water, electricity and gas, this paper elaborates the content and existing shortcomings of the key technologies of the power IOT for urban energy internet from the perspectives of information and communication, wishing to provide some reference for the future development and research of urban energy internet.
[5]
HUANG W J, DU E S, CAPUDER T, et al. Reliability and vulnerability assessment of multi-energy systems: an energy hub based method[J]. IEEE Transactions on Power Systems, 2021, 36(5): 3948-3959.
[6]
GE L J, LI Y L, YAN J, et al. Short-term load prediction of integrated energy system with wavelet neural network model based on improved particle swarm optimization and chaos optimization algorithm[J]. Journal of Modern Power Systems and Clean Energy, 2021, 19(6): 1490-1499.
[7]
王奖, 邓丰强, 张勇军, 等. 园区能源互联网的规划与运行研究综述[J]. 电力自动化设备, 2021, 41(2): 24-32, 55.
WANG Jiang, DENG Fengqiang, ZHANG Yongjun, et al. Review on planning and operation research of park energy Internet[J]. Electric Power Automation Equipment, 2021, 41(2): 24-32, 55.
[8]
郑玉平, 王丹, 万灿, 等. 面向新型城镇的能源互联网关键技术及应用[J]. 电力系统自动化, 2019, 43(14): 2-15.
ZHENG Yuping, WANG Dan, WAN Can, et al. Key technology and application of energy internet oriented to new-type towns[J]. Automation of Electric Power Systems, 2019, 43(14): 2-15.
[9]
苏小龙. 中国高碳能源向低碳能源转型问题研究[D]. 杭州: 浙江理工大学, 2013.
SU Xiaolong. Chinese transformation problem research of high-carbon energy to low-carbon energy[D]. Hangzhou: Zhejiang Sci-Tech University, 2013.
[10]
王晓辉, 季知祥, 周扬, 等. 城市能源互联网综合服务平台架构及关键技术[J]. 中国电机工程学报, 2021, 41(7): 2310-2321.
WANG Xiaohui, JI Zhixiang, ZHOU Yang, et al. Comprehensive service platform architecture and key technologies of urban energy Internet[J]. Proceedings of the CSEE, 2021, 41(7): 2310-2321.
[11]
葛磊蛟, 李元良, 刘航旭, 等. 多重异构城市能源互联网络实时仿真的顶层设计[J]. 湖北电力, 2021, 45(5): 77-85.
GE Leijiao, LI Yuanliang, LIU Hangxu, et al. Top-level design of real-time simulation of multi-heterogeneous urban energy interconnection network[J]. Hubei Electric Power, 2021, 45(5): 77-85.
[12]
林晓明, 张勇军, 陈伯达, 等. 计及多评价指标的园区能源互联网双层优化配置[J]. 电力系统自动化, 2019, 43(20): 8-15, 30.
LIN Xiaoming, ZHANG Yongjun, CHEN Boda, et al. Bi-level optimal configuration of park energy internet considering multiple evaluation indicators[J]. Automation of Electric Power Systems, 2019, 43(20): 8-15, 30.
[13]
熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41(9): 31-38.
XIONG Yufeng, CHEN Laijun, ZHENG Tianwen, et al. Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric Power Automation Equipment, 2021, 41(9): 31-38.
[14]
周灿煌, 郑杰辉, 荆朝霞, 等. 面向园区微网的综合能源系统多目标优化设计[J]. 电网技术, 2018, 42(6): 1687-1697.
ZHOU Canhuang, ZHENG Jiehui, JING Zhaoxia, et al. Multi-objective optimal design of integrated energy system for park-level microgrid[J]. Power System Technology, 2018, 42(6): 1687-1697.
[15]
徐岩, 张建浩, 张荟. 含冷、热、电、气的园区综合能源系统选址定容规划案例分析[J]. 太阳能学报, 2022, 43(1):313-322.
XU Yan, ZHANG Jianhao, ZHANG Hui. Case analysis on site-selection capacity-determination planning of park integrated energy system with cold,hot,electricity and gas[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 313-322.
[16]
田立亭, 程林, 李荣, 等. 基于加权有向图的园区综合能源系统多场景能效评价方法[J]. 中国电机工程学报, 2019, 39(22): 6471-6483.
TIAN Liting, CHENG Lin, LI Rong, et al. A multi-scenario energy efficiency evaluation method for district multi-energy systems based on weighted directed graph[J]. Proceedings of the CSEE, 2019, 39(22): 6471-6483.
[17]
曹严, 穆云飞, 贾宏杰, 等. 考虑建设时序的园区综合能源系统多阶段规划[J]. 中国电机工程学报, 2020, 40(21): 6815-6828.
CAO Yan, MU Yunfei, JIA Hongjie, et al. Multi-stage planning of park-level integrated energy system considering construction time sequence[J]. Proceedings of the CSEE, 2020, 40(21): 6815-6828.
[18]
李珂, 邵成成, 王雅楠, 等. 考虑电-气-交通耦合的城市综合能源系统规划[J/OL]. 中国电机工程学报, 2022(2022-01-19) [2022-05-12]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220118.1425.014.html
LI Ke, SHAO Chengcheng, WANG Yanan, et al. Optimal planning of urban integrated energy systems considering electricity-gas-transportation interactions[J/OL]. Proceedings of the CSEE, 2022(2022-01-19) [2022-05-12]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220118.1425.014.html
[19]
陈娟, 黄元生, 鲁斌. 区域能源互联网"站-网"布局优化研究[J]. 中国电机工程学报, 2018, 38(3): 675-684.
CHEN Juan, HUANG Yuansheng, LU Bin. Research on "stations-pipelines" layout and optimization of regional energy internet[J]. Proceedings of the CSEE, 2018, 38(3): 675-684.
[20]
刘涤尘, 彭思成, 廖清芬, 等. 面向能源互联网的未来综合配电系统形态展望[J]. 电网技术, 2015, 39(11):3023-3034.
LIU Dichen, PENG Sicheng, LIAO Qingfen, et al. Outlook of future integrated distribution system morphology orienting to energy internet[J]. Power System Technology 2015, 39(11): 3023-3034.
[21]
郭创新, 王惠如, 张伊宁, 等. 面向区域能源互联网的"源-网-荷"协同规划综述[J]. 电网技术, 2019, 43(9): 3071-3080.
GUO Chuangxin, WANG Huiru, ZHANG Yining, et al. Review of "source-grid-load" co-planning orienting to regional energy Internet[J]. Power System Technology, 2019, 43(9): 3071-3080.
[22]
阮前途, 梅生伟, 黄兴德, 等. 低碳城市电网韧性提升挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2819-2830.
RUAN Qiantu, MEI Shengwei, HUANG Xingde, et al. Challenges and research prospects of resilience enhancement of low-carbon power grid[J]. Proceedings of the CSEE, 2022, 42(8): 2819-2830.
[23]
王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Yongzhen, KANG Ligai, ZHANG Jing, et al. Development history, typical form and future trend of integrated energy system[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 84-95.
[24]
朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41(23): 7905-7924.
ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Review of data-driven load forecasting for integrated energy system[J]. Proceedings of the CSEE, 2021, 41(23): 7905-7924.
[25]
夏雪薇, 魏霞, 陈洁, 等. 风电-P2G与燃气采暖多能耦合系统规划分析[J]. 太阳能学报, 2021, 42(6): 356-363.
XIA Xuewei, WEI Xia, CHEN Jie, et al. Planning and analysis of wind power-P2G and gas heating multi-energy coupling system[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 356-363.
[26]
郭晔, 石峻玮, 毛安家. 考虑需求响应的CCHP系统中分布式电源的选址定容[J]. 电力建设, 2017, 38(12): 43-50.
Abstract
 摘  要:以往对于冷/热/电联供(combined cooling heating and power, CCHP)系统的研究主要集中在其运行优化上,较少对系统中分布式电源(distributed generation, DG)的选址定容问题进行研究,更少有文献将基于价格与基于激励的需求响应(demand response, DR)综合考虑在系统中。该文利用CCHP系统的多能源互补特性,综合考虑基于价格与基于激励的需求响应,以分布式电源接入节点与接入容量为变量,提出了计及需求响应的分布式电源选址定容模型。首先,建立了CCHP系统热电耦合运行模型。其次,综合考虑负荷削减量、中断持续时间与中断时间因子等因素,提出了可中断负荷的单位电量补偿定价的方法。通过在目标函数中分析需求响应成本,使规划目标更为全面,从而节约投资。另外,综合基于激励与基于价格的需求响应作用,考虑用户对于电价、燃气价格、可中断负荷单位电量补偿定价的响应,定义了改进的价格弹性系数,并利用此系数对负荷预测进行修正。最后,通过基于邻域再搜索的改进粒子群算法(neighborhood re-dispatch particle swarm optimization,NR-PSO)对规划模型进行求解,并通过对某13节点综合园区系统的仿真分析,验证了所提模型及方法的有效性。 
GUO Ye, SHI Junwei, MAO Anjia. Distributed power siting and sizing considering demand response in CCHP system[J]. Electric Power Construction, 2017, 38(12): 43-50.
&nbsp;ABSTRACT: The traditional combined cooling heating and power &nbsp;(CCHP) system researches mainly focus on its operation optimization, and lesson the siting and sizing of distributed generation (DG) in the system. The demand response (DR) based on price and incentive is not taken into account in the process. Based on the multi-energy complementary characteristics of CCHP system, this paper puts forward the siting and sizing model of distributed power with considering price and incentive based DR, which takes distributed power access nodes and access capacity as variables. Firstly, we establish the thermo-electric coupling operation model for CCHP system. Secondly, we propose the pricing method of unit power compensation with interruptible load, comprehensively considering load reduction, interruption duration and interrupt time factor. Then, by analyzing the DR cost in the objective function, the planning goal is more comprehensive and the investment is saved. In addition, based on the consideration of incentive and price-based DR, an improved price elasticity coefficient is defined with considering the influence of electric price, gas price and the compensating price of unit power with interruptible load, which is used to correct the load forecast. At last, the planning model is solved by the neighborhood re-dispatch particle swarm optimization algorithm (NR-PSO). And through the simulation analysis of a 13-node integrated park system, the validity of the proposed model and method is verified.<div>&nbsp;</div>
[27]
权超, 董晓峰, 姜彤. 基于CCHP耦合的电力、天然气区域综合能源系统优化规划[J]. 电网技术, 2018, 42(8):2456-2466.
QUAN Chao, DONG Xiaofeng, JIANG Tong. Optimization planning of integrated electricity-gas community energy system based on coupled CCHP[J]. Power System Technology, 2018, 42(8): 2456-2466.
[28]
黄伟, 刘文彬. 基于多能互补的园区综合能源站-网协同优化规划[J]. 电力系统自动化, 2020, 44(23):20-28.
HUANG Wei, LIU Wenbin. Multi-energy complementary based coordinated optimal planning of park integrated energy station-network[J]. Automation of Electric Power Systems, 2020, 44(23): 20-28.
[29]
黄国日, 刘伟佳, 文福拴, 等. 具有电转气装置的电-气混联综合能源系统的协同规划[J]. 电力建设, 2016, 37(9):1-13.
Abstract
近年来随着天然气发电比重的不断增加和电转气(power to gas,P2G)技术的逐步成熟,电力系统和天然气系统的耦合程度随之加深,只针对电力系统的规划方法已经不能满足电-气混联综合能源系统的规划和运行需求。在此背景下,考虑热电联产(combined heat and power,CHP)机组和电转气装置,对电-气混联综合能源系统的协同规划问题做了些初步研究。首先,引入能源中心概念,其中能源载体可从某种形式转换成其他形式,如热电联产机组,并对能源中心进行建模。在此基础上,构建了包含能源中心和电转气装置等的综合能源系统的非线性模型并进行线性化处理。之后,以电-气混联综合能源系统的投资成本、运行成本以及表征可靠性的能量短缺成本之和最小为规划目标,采用基于通用代数建模系统(general algebraic modeling system,GAMS)平台的CPLEX求解器对常规发电机组、热电联产机组、电转气厂站、燃气锅炉、输电线路和天然气管道的选址定容问题进行优化,并对规划方案的可靠性以及电转气厂站消纳间歇性可再生能源的效益进行评估。最后,用综合能源模拟系统对所提出的方法做了说明。
HUANG Guori, LIU Weijia, WEN Fushuan, et al. Collaborative planning of integrated electricity and natural gas energy systems with power-to-gas stations[J]. Electric Power Construction, 2016, 37(9): 1-13.
The increasing penetration of natural gas power generation and ever-developing power to gas (P2G) technology in recent years have promoted the coupling between the power system and the natural gas system than ever before. This coupling has introduced new challenges to the planning of integrated electricity and natural gas energy systems, as the existing power system planning models normally overlook the impacts of natural gas or other energy systems. Given this background, this paper studies the collaborative planning of integrated energy systems with combined heat and power (CHP) plants and P2G stations. First, the energy center concept is introduced and modeled, and in an energy center various kinds of energy conversion such as CHP can be carried out. A nonlinear model for an integrated energy system with multiple interconnected energy centers and P2G stations is next presented and linearized. Then, this paper takes the minimum overall cost as planning objectives including investment cost, operation cost and energy shortage cost characterizing the reliability of integrated energy systems, optimizes the location sizing problems of traditional generating units, CHP plants, P2G stations, gas-fired boilers, transmission lines and natural gas pipelines with using general algebraic modeling system(GAMS) -based CPLEX solver, and evaluates the reliability of the planning scheme and the benefit generated by P2G stations in promoting the capability of accommodating intermittent renewable energy. Finally, the effectiveness of the proposed collaborative planning model is demonstrated by a sample integrated energy system.
[30]
范宏, 刘巧宏, 周嘉新, 等. 气电联合系统的协同规划方法及应用[J]. 水电能源科学, 2019, 37(7): 205-208.
FAN Hong, LIU Qiaohong, ZHOU Jiaxin, et al. Research on collaborative planning method of combined gas-electric systems[J]. Water Resources and Power, 2019, 37(7): 205-208.
[31]
陈志, 胡志坚, 翁菖宏, 等. 基于阶梯碳交易机制的园区综合能源系统多阶段规划[J]. 电力自动化设备, 2021, 41(9): 148-155.
CHEN Zhi, HU Zhijian, WENG Changhong, et al. Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J]. Electric Power Automation Equipment, 2021, 41(9): 148-155.
[32]
陈昌铭, 张群, 黄亦昕, 等. 考虑最优建设时序和云储能的园区综合能源系统优化配置方法[J]. 电力系统自动化, 2022, 46(2): 24-32.
CHEN Changming, ZHANG Qun, HUANG Yixin, et al. Optimal configuration method of park-level integrated energy system considering optimal construction time sequence and cloud energy storage[J]. Automation of Electric Power Systems, 2022, 46(2): 24-32.
[33]
周步祥, 夏海东, 臧天磊. 考虑能量梯级利用的园区综合能源系统站网协同规划[J]. 电力自动化设备, 2022, 42(1): 20-27.
ZHOU Buxiang, XIA Haidong, ZANG Tianlei. Station and network coordinated planning of park integrated energy system considering energy cascade utilization[J]. Electric Power Automation Equipment, 2022, 42(1): 20-27.
[34]
赵玺灵, 付林, 张世钢. 以SOFC为发电设备的热泵型BCCHP系统[J]. 太阳能学报, 2009, 30(11): 1496-1500.
ZHAO Xiling, FU Lin, ZHANG Shigang. Heat pump type BCCHP system based on SOFC[J]. Acta Energiae Solaris Sinica, 2009, 30(11): 1496-1500.
[35]
宋阳阳, 王艳松, 衣京波. 计及需求侧响应和热/电耦合的微网能源优化规划[J]. 电网技术, 2018, 42(11): 3469-3476.
SONG Yangyang, WANG Yansong, YI Jingbo. Microgrid energy source optimization planning considering demand side response and thermo-electrical coupling[J]. Power System Technology, 2018, 42(11): 3469-3476.
[36]
崔鹏程, 史俊祎, 文福拴, 等. 计及综合需求侧响应的能量枢纽优化配置[J]. 电力自动化设备, 2017, 37(6): 101-109.
CUI Pengcheng, SHI Junyi, WEN Fushuan, et al. Optimal energy hub configuration considering integrated demand response[J]. Electric Power Automation Equipment, 2017, 37(6): 101-109.
[37]
蔡含虎, 向月, 杨昕然. 计及需求响应的综合能源系统容量经济配置及效益分析[J]. 电力自动化设备, 2019, 39(8): 186-194.
CAI Hanhu, XIANG Yue, YANG Xinran. Economic capacity allocation and benefit analysis of integrated energy system considering demand response[J]. Electric Power Automation Equipment, 2019, 39(8): 186-194.
[38]
丁曦, 姜威, 郭创新, 等. 考虑需求响应的电/热/气云储能优化配置策略[J]. 电力建设, 2022, 43(3): 83-99.
Abstract
面向越来越开放的能源交易市场,为充分调动用户侧资源,提出了一种考虑需求响应(demand response, DR)的电/热/气云储能(cloud energy storage,CES)优化配置策略。建立含电/热/气云储能能源集线器(energy hub, EH)结构,从参与云储能商业模式的用户侧与云储能提供商出发,构建两主体双层优化模型。底层基于长短期记忆和贝叶斯神经网络的概率预测方法,刻画新能源出力的不确定性,建立考虑需求响应的用户侧云储能充放能模型,以用户总成本最小为目标优化决策用户侧充放能行为,并将决策信息传递到云储能提供商。顶层以云储能提供商的总成本最小为目标,集中优化决策实体储能功率和容量的配置问题。通过大M法对目标以及约束中的非线性部分进行松弛线性化,将其转化为混合整数线性规划模型。最后,建立4个典型应用场景,通过Matlab中的YALMIP工具箱调用CPLEX优化求解器对不同场景下的模型进行求解,联合对比在4种不同场景下的整体成本与收益,验证该策略在资源共享、节约系统整体成本等方面的优越性。
DING Xi, JIANG Wei, GUO Chuangxin, et al. Optimal configuration of electricity-heat-gas cloud energy storage considering demand response[J]. Electric Power Construction, 2022, 43(3): 83-99.

In order to fully mobilize user-side resources in an increasingly open energy trading market, this paper proposes an optimal allocation strategy for electricity-heat-gas cloud energy storage (CES) considering demand response (DR). The proposed optimized configuration establishes an energy hub (EH) structure with electricity-heat-gas cloud energy storage, and a two-subject two-layer optimized model from the view of users and providers participating in the CES business model is established. The lower layer describes the uncertainty of new energy output according to the probability prediction method based on long-term and short-term memory and Bayesian neural network; a user-side CES charging and discharging model considering demand response, which is optimized aiming to minimize the user’s total cost, is established; and the decision information will be informed to the CES provider. The upper layer, aimed to minimize the investment and construction cost of CES providers, concentrates on optimizing the allocation of energy storage power and capacity of decision-making entities. The big M method is adopted to relax and linearize the nonlinear part of the objective and constraints, and then it is transformed into a mixed-integer linear optimization problem. Finally, four typical application scenarios are established. As to the verification of the superiority of the strategy, the CPLEX optimization solver is called through the YALMIP toolbox in Matlab to solve the models in different scenarios, and the overall costs and benefits are jointly compared.

[39]
闫梦阳, 李华强, 王俊翔, 等. 计及综合需求响应不确定性的园区综合能源系统优化运行模型[J]. 电力系统保护与控制, 2022, 50(2): 163-175.
YAN Mengyang, LI Huaqiang, WANG Junxiang, et al. Optimal operation model of a park integrated energy system considering uncertainty of integrated demand response[J]. Power System Protection and Control, 2022, 50(2): 163-175.
[40]
刘文霞, 李征洲, 杨粤, 等. 计及需求响应不确定性的综合能源系统协同优化配置[J]. 电力系统自动化, 2020, 44(10): 41-49.
LIU Wenxia, LI Zhengzhou, YANG Yue, et al. Collaborative optimal configuration for integrated energy system considering uncertainties of demand response[J]. Automation of Electric Power Systems, 2020, 44(10): 41-49.
[41]
WANG G B, XU Z, WEN F S, et al. Traffic-constrained multiobjective planning of electric-vehicle charging stations[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2363-2372.
[42]
YAO W F, ZHAO J H, WEN F S, et al. A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging systems[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1811-1821.
[43]
艾芊, 郝然. 多能互补、集成优化能源系统关键技术及挑战[J]. 电力系统自动化, 2018, 42(4): 2-10, 46.
AI Qian, HAO Ran. Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4): 2-10, 46.
[44]
郝然. 多能互补和集成优化能源系统关键技术及挑战[J]. 能源研究与利用, 2018(2): 4-5, 8.
[45]
侯波. 城市规划的渐进决策模式探析[D]. 长春: 吉林大学, 2008.
HOU Bo. A study of incremental urban planning model[D]. Changchun: Jilin University, 2008.
[46]
葛少云, 贾鸥莎. 配电变电站多阶段优化规划模型[J]. 电网技术, 2012, 36(10): 113-118.
GE Shaoyun, JIA Ousha. Multi-stage model for optimal distribution substation planning[J]. Power System Technology, 2012, 36(10): 113-118.
[47]
李新, 魏俊, 叶圣永, 等. 一种含分布式电源的配电网多阶段规划方法: CN110909939A[P]. 2020-03-24.
LI Xin, WEI Jun, YE Shengyong, et al. Multi-stage planning method for power distribution network containing distributed power supply: CN110909939A[P]. 2020-03-24.
[48]
张全明, 崔晓昱, 张笑弟, 等. 计及用户不确定性的多时段耦合需求响应激励优化策略[J/OL]. 中国电机工程报, 2022(2022-03-05) [2022-05-12]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220302.1738.005.html
ZHANG Quanming, CUI Xiaoyu, ZHANG Xiaodi, et al. Incentive optimization strategy of multi period coupling demand response considering user uncertainty[J/OL]. Proceedings of the CSEE, 2022(2022-03-05) [2022-05-12]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220302.1738.005.html
[49]
BAHRAMI S, SHEIKHI A. From demand response in smart grid toward integrated demand response in smart energy hub[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 650-658.
[50]
秦羽飞, 葛磊蛟, 王波. 能源互联网群体智能协同控制与优化技术[J]. 华电技术, 2021, 43(9):1-13.
QIN Yufei, GE Leijiao, WANG Bo. Swarm intelligence collaborative control and optimization technology of Energy Internet[J]. Huadian Technology, 2021, 43(9):1-13.
[51]
GE L J, LIU H X, YAN J, et al. Optimal integrated energy system planning with DG uncertainty affine model and carbon emissions charges[J]. IEEE Transactions on Sustainable Energy, 2022, 13(2): 905-918.
[52]
GE L J, LIU J H, WANG B, et al. Improved adaptive gray wolf genetic algorithm for photovoltaic intelligent edge terminal optimal configuration[J]. Computers and Electrical Engineering, 2021, 95: 107394.
[53]
BOSCHERT S, ROSEN R. Digital twin:the simulation aspect[M]. Switzerland: Springer International Publishing, 2016:59-74.
[54]
王成山, 董博, 于浩, 等. 智慧城市综合能源系统数字孪生技术及应用[J]. 中国电机工程学报, 2021, 41(5): 1597-1608.
WANG Chengshan, DONG Bo, YU Hao, et al. Digital twin technology and its application in the integrated energy system of smart city[J]. Proceedings of the CSEE, 2021, 41(5): 1597-1608.
[55]
刘静琨, 张宁, 康重庆. 电力系统云储能研究框架与基础模型[J]. 中国电机工程学报, 2017, 37(12): 3361-3371.
LIU Jingkun, ZHANG Ning, KANG Chongqing. Research framework and basic models for cloud energy storage in power system[J]. Proceedings of the CSEE, 2017, 37(12): 3361-3371.
[56]
LIU J K, ZHANG N, KANG C Q, et al. Cloud energy storage for residential and small commercial consumers: a business case study[J]. Applied Energy, 2017, 188: 226-236.
[57]
葛磊蛟, 李元良, 陈艳波, 等. 智能配电网态势感知关键技术及实施效果评价[J]. 高电压技术, 2021, 47(7): 2269-2280.
GE Leijiao, LI Yuanliang, CHEN Yanbo, et al. Key technologies of situation awareness and implementation effectiveness evaluation in smart distribution network[J]. High Voltage Engineering, 2021, 47(7): 2269-2280.
[58]
葛磊蛟, 李元良, 汪宇倩. 智能配电网态势感知实现效果综合评估模型[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(11): 1101-1111.
GE Leijiao, LI Yuanliang, WANG Yuqian. Comprehensive evaluation model for situational awareness effects of a smart distribution network[J]. Journal of Tianjin University (Science and Technology), 2020, 53(11): 1101-1111.
[59]
GE L J, LI Y L, LI S X, et al. Evaluation of the situational awareness effects for smart distribution networks under the novel design of indicator framework and hybrid weighting method[J]. Frontiers in Energy, 2021, 15(1): 143-158.

As a key application of smart grid technologies, the smart distribution network (SDN) is expected to have a high diversity of equipment and complexity of operation patterns. Situational awareness (SA), which aims to provide a critical visibility of the SDN, will enable a significant assurance for stable SDN operations. However, the lack of systematic evaluation through the three stages of perception, comprehensive, and prediction may prevent the SA technique from effectively achieving the performance necessary to monitor and respond to events in SDN. To analyze the feasibility and effectiveness of the SA technique for the SDN, a comprehensive evaluation framework with specific performance indicators and systematic weighting methods is proposed in this paper. Besides, to implement the indicator framework while addressing the key issues of human expert scoring ambiguity and the lack of data in specific SDN areas, an improved interval-based analytic hierarchy process-based subjective weighting and a multi-objective programming method-based objective weighting are developed to evaluate the SDN SA performance. In addition, a case study in a real distribution network of Tianjin, China is conducted whose outcomes verify the practicality and effectiveness of the proposed SA technique for SDN operating security.

Funding

State Grid Corporation of China Research Program(5400-202128572A-0-5-SF)
PDF(5125 KB)

Accesses

Citation

Detail

Sections
Recommended

/