Point-Estimation Based Method for Optimizing Both Location and Capacity of Grid-Connected Wind Farm

LI Huaqu1,XIAO Jinsong1,SHU Zhan2,ZHANG Zheng1,YAO Liangzhong1,PENG Xiaotao1

Electric Power Construction ›› 2020, Vol. 41 ›› Issue (4) : 109-116.

PDF(2812 KB)
PDF(2812 KB)
Electric Power Construction ›› 2020, Vol. 41 ›› Issue (4) : 109-116. DOI: 10.3969/j.issn.1000-7229.2020.04.013

Point-Estimation Based Method for Optimizing Both Location and Capacity of Grid-Connected Wind Farm

  • LI Huaqu1,XIAO Jinsong1,SHU Zhan2,ZHANG Zheng1,YAO Liangzhong1,PENG Xiaotao1
Author information +
History +

Abstract

Due to the random fluctuation of wind power having impact on the real-time operation state of power system, reasonable optimization of both location and capacity of grid-connected wind farm under the classical operation mode should be considered. It is benefitial for both reducing the static safety risk and improving the economic operation of the grid. Considering the uncertainty of both power-source side and load side, the correlation of different wind speed and the correlation of different loads, a probability power flow calculation method considering the correlation of random variables is studied in this paper, which generates the correlation samples by combing point estimation and inverse Nataf transform. Moreover, through embedding the point-estimation based algorithm for probabilistic power flow, which considers the random correlation, into the adaptive particle swarm optimization algorithm, and avoiding the optimism on the constraints caused by using the point estimation method to solve the probabilistic power flow, taking the minimization of both the active power loss rate of the grid and the average deviation of bus voltages as the objective, the method for reasonably planning both the location and capacity of grid-connected wind farm is presented. Finally, the effectiveness of the proposed optimizing method is validated by the simulation carried out on the IEEE 57-node system. At the same time, the simulation result also shows the necessity of improving the reliability of the optimizing result by considering the correlation of the random variables.

Key words

wind power integration / point estimation / probabilistic load flow / probability correlation / particle swarm optimization

Cite this article

Download Citations
LI Huaqu1,XIAO Jinsong1,SHU Zhan2,ZHANG Zheng1,YAO Liangzhong1,PENG Xiaotao1. Point-Estimation Based Method for Optimizing Both Location and Capacity of Grid-Connected Wind Farm[J]. Electric Power Construction. 2020, 41(4): 109-116 https://doi.org/10.3969/j.issn.1000-7229.2020.04.013

References

[1]芮松华, 刘海璇, 王洪波, 等. 基于遗传-蚁群算法的交直流配电网分布式电源优化配置[J]. 电力建设, 2019, 40(4): 9-17.
RUI Songhua, LIU Haixuan, WANG Hongbo, et al. DG planning method for AC/DC distribution network using genetic-ant colony algorithm[J]. Electric Power Construction, 2019, 40(4): 9-17.
[2]方金涛, 龚庆武. 考虑运行风险的主动配电网分布式电源多目标优化配置[J]. 电力建设, 2019, 40(5): 128-134.
FANG Jintao, GONG Qingwu. Multi-objective optimization configuration of distributed generation for active distribution network considering operational risk[J]. Electric Power Construction, 2019, 40(5): 128-134.
[3]聂宏展, 石浩, 杨金成, 等. 计及不确定因素的多目标分布式电源优化配置[J]. 电力建设, 2016, 37(10): 130-136.
NIE Hongzhan, SHI Hao, YANG Jincheng, et al. Multi-objective optimal configuration of distributed generation considering uncertainties[J]. Electric Power Construction, 2016, 37(10): 130-136.
[4]杨磊, 杨晓辉, 吴越, 等. 基于改进猫群算法的分布式电源优化配置[J]. 电力系统保护与控制, 2019, 47(1): 95-100.
YANG Lei, YANG Xiaohui, WU Yue, et al. Research on optimized distributed generations locating based on modified cat swarm optimization[J]. Power System Protection and Control, 2019, 47(1): 95-100.
[5]关添升, 王琦, 刘赫, 等. 基于改进果蝇优化算法的分布式电源优化配置[J]. 电力建设, 2016, 37(6): 103-108.
GUAN Tiansheng, WANG Qi, LIU He, et al. Optimal configuration of distributed generation based on improved fruit fly optimization algorithm[J]. Electric Power Construction, 2016, 37(6): 103-108.
[6]SULTANA S, ROY P K. Oppositional krill herd algorithm for optimal location of distributed generator in radial distribution system[J]. International Journal of Electrical Power & Energy Systems, 2015, 73: 182-191.
[7]张沈习, 程浩忠, 李珂. 考虑相关性的风力发电机组多阶段选址定容规划[J]. 电网技术, 2014, 38(1): 53-59.
ZHANG Shenxi, CHENG Haozhong, LI Ke. Multistage planning for wind turbine generator considering correlations[J]. Power System Technology, 2014, 38(1): 53-59.
[8]张沈习, 李珂, 程浩忠, 等. 考虑相关性的间歇性分布式电源选址定容规划[J]. 电力系统自动化, 2015, 39(8): 53-58, 140.
ZHANG Shenxi, LI Ke, CHENG Haozhong, et al. Optimal siting and sizing of intermittent distributed generator considering correlations[J]. Automation of Electric Power Systems, 2015, 39(8): 53-58, 140.
[9]邓威, 李欣然, 李培强, 等. 基于互补性的间歇性分布式电源在配网中的优化配置[J]. 电工技术学报, 2013, 28(6): 216-225.
DENG Wei, LI Xinran, LI Peiqiang, et al. Optimal allocation of intermittent distributed generation considering complementarity in distributed network[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 216-225.
[10]彭显刚, 林利祥, 刘艺, 等. 计及电动汽车和可再生能源不确定因素的多目标分布式电源优化配置[J]. 电网技术, 2015, 39(8): 2188-2194.
PENG Xiangang, LIN Lixiang, LIU Yi, et al. Multi-objective optimal allocation of distributed generation considering uncertainties of plug-in electric vehicles and renewable energy sources[J]. Power System Technology, 2015, 39(8): 2188-2194.
[11]李珂, 邰能灵, 张沈习, 等. 考虑相关性的分布式电源多目标规划方法[J]. 电力系统自动化, 2017, 41(9): 51-57, 199.
LI Ke, TAI Nengling, ZHANG Shenxi, et al. Multi-objective planning method of distributed generators considering correlations[J]. Automation of Electric Power Systems, 2017, 41(9): 51-57, 199.
[12]艾小猛, 文劲宇, 吴桐, 等. 基于点估计和Gram-Charlier展开的含风电电力系统概率潮流实用算法[J]. 中国电机工程学报, 2013, 33(16): 16-23.
AI Xiaomeng, WEN Jinyu, WU Tong, et al. A practical algorithm based on point estimate method and gram-charlier expansion for probabilistic load flow calculation of power systems incorporating wind power[J]. Proceedings of the CSEE, 2013, 33(16): 16-23.
[13]SU C L. Probabilistic load-flow computation using point estimate method[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1843-1851.
[14]MORALES J M, PEREZ-RUIZ J. Point estimate schemes to solve the probabilistic power flow[J]. IEEE Transactions on Power Systems, 2007, 22(4): 1594-1601.
[15]UNIYAL A, KUMAR A. Optimal distributed generation placement with multiple objectives considering probabilistic load[J]. Procedia Computer Science, 2018, 125: 382-388.
[16]张立波, 程浩忠, 曾平良, 等. 基于Nataf逆变换的概率潮流三点估计法[J]. 电工技术学报, 2016, 31(6): 187-194.
ZHANG Libo, CHENG Haozhong, ZENG Pingliang, et al. A three-point estimate method for solving probabilistic load flow based on inverse Nataf transformation[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 187-194.
[17]胡源, 别朝红, 宁光涛, 等. 计及风电不确定性的多目标电网规划期望值模型与算法[J]. 电工技术学报, 2016, 31(10): 168-175.
HU Yuan, BIE Zhaohong, NING Guangtao, et al. The expected model and algorithm of multi-objective transmission network planning considering the uncertainty of wind power[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 168-175.
[18]杨天, 王京波, 宋少帅, 等. 考虑风速相关性的电力系统动态经济调度[J]. 电工技术学报, 2016, 31(16): 189-197.
YANG Tian, WANG Jingbo, SONG Shaoshuai, et al. Dynamic economic dispatch of power system considering the correlation of the wind speed[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 189-197.
[19]LIU Z P, WEN F S, LEDWICH G. Optimal siting and sizing of distributed generators in distribution systems considering uncertainties[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2541-2551.
[20]QIN Z L, LI W Y, XIONG X F. Generation system reliability evaluation incorporating correlations of wind speeds with different distributions[J]. IEEE Transactions on Power Systems, 2013, 28(1): 551-558.
[21]LI Y M, LI W Y, YAN W, et al. Probabilistic optimal power flow considering correlations of wind speeds following different distributions[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1847-1854.
[22]初壮, 李钊, 白望望. 计及不确定性和环境因素的多类型分布式电源选址定容[J]. 电力系统保护与控制, 2017, 45(13): 34-41.
CHU Zhuang, LI Zhao, BAI Wangwang. Optimal siting and sizing of distributed generations considering uncertainties and environmental factors[J]. Power System Protection and Control, 2017, 45(13): 34-41.
[23]邓威, 李欣然, 徐振华, 等. 考虑风速相关性的概率潮流计算及影响分析[J]. 电网技术, 2012, 36(4): 45-50.
DENG Wei, LI Xinran, XU Zhenhua, et al. Calculation of probabilistic load flow considering wind speed correlation and analysis on influence of wind speed correlation[J]. Power System Technology, 2012, 36(4): 45-50.

Funding

This work is supported by the National Key Research and Development Program of China (No. 2018YFB0904000).
PDF(2812 KB)

Accesses

Citation

Detail

Sections
Recommended

/