Research on Model of Blockchain-enabled Power Carbon Emission Trade Considering Credit Scoring Mechanism

CUI Shuyin, LU Yi, CHANG Xiao

Electric Power Construction ›› 2019, Vol. 40 ›› Issue (1) : 104-111.

PDF(1903 KB)
PDF(1903 KB)
Electric Power Construction ›› 2019, Vol. 40 ›› Issue (1) : 104-111. DOI: 10.3969/j.issn.1000-7229.2019.01.013

Research on Model of Blockchain-enabled Power Carbon Emission Trade Considering Credit Scoring Mechanism

  • CUI Shuyin, LU Yi, CHANG Xiao
Author information +
History +

Abstract

Blockchain is an emerging shared database technology. Due to its decentralization, transparency and fairness, it has been researched and applied in various fields. On the basis of the traditional carbon emission trading mechanism, a credit scoring mechanism is introduced to define the transaction priority value (PV), and then the carbon emission trading blockchain network model (BENT) is proposed. It is worth mentioning that a smart contract model (SC) combined with the carbon emission trading mechanism is established in this model, thus achieving automatic measurement of carbon emission rights and currency. Finally, simulations of three power companies with different carbon emission right requirements show that the BENT model can better reflect the carbon emission trading needs of market participants, and ensure the safe storage and interaction of information through blockchain technology and the scoring mechanism is conducive to fair and equitable operation of the market, further constraining market participants and promoting the goal of achieving carbon emission reduction.

Key words

carbon emission trade / blockchain / credit scoring mechanism / transaction priority value / smart contract

Cite this article

Download Citations
CUI Shuyin, LU Yi, CHANG Xiao. Research on Model of Blockchain-enabled Power Carbon Emission Trade Considering Credit Scoring Mechanism[J]. Electric Power Construction. 2019, 40(1): 104-111 https://doi.org/10.3969/j.issn.1000-7229.2019.01.013

References


[1]中华人民共和国国务院新闻办公室.强化应对气候变化行动:中国国家自主贡献[R/OL]. (2015-11-18)[2018-05-26].http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/2015/20151119/xgbd33811/Document/1455864/1455864.htm.
[2]柴麒敏,傅莎,郑晓奇,等.中国重点部门和行业碳排放总量控制目标及政策研究[J].中国人口·资源与环境,2017,27(12):1-7.
CHAI Qimin, FU Sha, ZHENG Xiaoqi, et al. Carbon emission cap control target and policy study of selected sectors and industries in China[J]. China Population, Resources and Environment,2017, 27(12):1-7.
[3]中华人民共和国发展和改革委员会. 国家发展改革委关于印发《全国碳排放权交易市场建设方案(发电行业)》的通知[R/OL].(2017-12-18)[2018-06-19].http://www.ndrc.gov.cn/gzdt/201712/t20171220_871134.html.
[4]郑宇,赵俊华,孟科,等.计及碳交易机制的电力系统随机优化调度[J].电力建设, 2017,38(6):21-27.
ZHENG Yu, ZHAO Junhua, MENG Ke,et al. Carbon trading based stochastic optimal dispatching of power system[J]. Electric Power Construction,2017,38(6):21-27.
[5]狄开丽,李鹏,华浩瑞.计及碳排放成本的交直流混合微网优化运行[J].电力建设,2016,37(7):12-19.
DI Kaili, LI Peng, HUA Haorui. Optimal operation of AC-DC hybrid microgrid considering carbon emission cost[J]. Electric Power Construction, 2016,37(7):12-19.
[6]刘铠诚,孙嘉赣,周任军,等.碳市场下火电统一碳排放基准与减排效应分析[J].电力建设,2018,39(1):113-118.
LIU Kaicheng, SUN Jiagan, ZHOU Renjun, et al. A unified carbon emission benchmark for fossil-fueled units and its effect on carbon emission reduct[J]. Electric Power Construction,2018,39(1):113-118.
[7]娄素华,卢斯煜,吴耀武,等.低碳电力系统规划与运行优化研究综述[J].电网技术,2013,37(6):1483-1490.
LOU Suhua, LU Siyu, WU Yaowu, et al. An overview on low-carbon power system planning and operation optimization[J]. Power System Technology,2013,37(6):1483-1490.
[8]许小虎,邹毅.碳交易机制对电力行业影响分析[J].生态经济,2016,32(3):92-96.
XU Xiaohu, ZOU Yi. Analysis of impact of carbon trading on power industry[J]. Ecological Economy, 2016,32(3):92-96.
[9]梅天华,边巧燕,谢俊,等.考虑碳排放权的低碳电力调度及收益分摊[J].电力系统自动化,2016,40(22):49-55.
MEI Tianhua, BIAN Qiaoyan, XIE Jun, et al. Low-carbon power dispatching and benefit allocation considering carbon emission allowance[J]. Automation of Electric Power Systems,2016,40(22):49-55.
[10]李现忠,蔡兴国,付春梅.碳交易机制下考虑节能减排的竞价交易模式[J].电力系统自动化,2011,35(10):48-52.
LI Xianzhong, CAI Xingguo, FU Chunmei. The bidding transaction mode considering energy saving and emission reduction under the carbon trading mechanism[J]. Automation of Electric Power Systems,2011,35(10):48-52.
[11]TANG Ling, WU Jiaqian, YU Lean, et al. Carbon emissions trading scheme exploration in China: A multi-agent-based model[J]. Energy Policy,2015,81(6):152-169.
[12]蒋泽辉,赵涛,王娟,等.全国性碳交易市场对电力行业的潜在影响:基于多Agent模型[J].现代电力,2017,34(4):86-94.
JIANG Zehui, ZHAO Tao, WANG Juan, et al. Potential effects of carbon emissions trading on china power generation sector based on multi-agent[J]. Modern Electric Power, 2017,34(4): 86-94.
[13]康艳兵,熊小平,赵盟.碳交易本质与制度框架[J].中国发展观察,2015(10):32-35.
KANG Yanbing, XIONG Xiaoping, ZHAO Meng. The nature of carbon trading and the institutional framework[J]. China Development Observation, 2015(10):32-35.
[14]黄超,李晓庆,陈理飞.我国碳排放交易市场建设存在的问题与对策[J].价值工程, 2016, 35(33): 233-235.
HUANG Chao, LI Xiaoqing, CHEN Lifei. Problems and countermeasures in the construction of carbon emission trading market in China[J]. Value Engineering,2016,35(33):233-235.
[15]潘家华.碳排放交易体系的构建、挑战与市场拓展[J].中国人口·资源与环境,2016,26(8):1-5.
PAN Jiahua. Construction,challenges and market expansion of emissions trading system[J]. China Population,Resources and Environment,2016,26(8): 1-5.
[16]张宁,王毅,康重庆,等.能源互联网中的区块链技术:研究框架与典型应用初探[J].中国电机工程学报,2016,36(15):4011-4023.
ZHANG Ning, WANG Yi, KANG Chongqing,et al. Blockchain technique in the energy internet: Preliminary research framework and typical applications[J]. Proceedings of the CSEE,2016,36(15):4011-4023.
[17]袁勇,王飞跃.区块链技术发展现状与展望[J].自动化学报,2016,42(4):481-494.
YUAN Yong, WANG Feiyue. Blockchain: The state of the art and future trends[J]. Acta Automatica Sinica,2016,42(4):481-494.
[18]KHAQQI K N, SIKORSKI J J, HADINOTO K, et al. Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application[J]. Applied Energy,2018,209(1):8-19.
[19]佘维,胡跃,杨晓宇,等.基于能源区块链网络的虚拟电厂运行与调度模型[J].中国电机工程学报,2017,37(13):3729-3736.
SHE Wei, HU Yue, YANG Xiaoyu,et al. Virtual power plant operation and scheduling model based on energy blockchain network[J]. Proceedings of the CSEE, 2017,37(13): 3729-3736.
[20]刘肖飞. 基于动态授权的拜占庭容错共识算法的区块链性能改进研究[D].杭州:浙江大学,2017.
LIU Xiaofei. Research on performance improvement of blockchain based on dynamic authorization of Byzantine fault tolerance consensus algorithm[D]. Hangzhou: Zhejiang University, 2017.

Funding

his work is supported by the Project of Shanghai University Humanities and Social Sciences Key Research Base: “One Belt, One Road” Energy and Power Management and Development Strategy Research Center (No.WKJD15004).
PDF(1903 KB)

Accesses

Citation

Detail

Sections
Recommended

/